Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(6): 061401, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827558

RESUMEN

Ultracompact objects with light rings (LRs) but without an event horizon could mimic black holes (BHs) in their strong gravity phenomenology. But are such objects dynamically viable? Stationary and axisymmetric ultracompact objects that can form from smooth, quasi-Minkowski initial data must have at least one stable LR, which has been argued to trigger a spacetime instability; but its development and fate have been unknown. Using fully nonlinear numerical evolutions of ultracompact bosonic stars free of any other known instabilities and introducing a novel adiabatic effective potential technique, we confirm the LRs triggered instability, identifying two possible fates: migration to nonultracompact configurations or collapse to BHs. In concrete examples we show that typical migration (collapse) timescales are not larger than ∼10^{3} light-crossing times, unless the stable LR potential well is very shallow. Our results show that the LR instability is effective in destroying horizonless ultracompact objects that could be plausible BH imitators.

2.
Phys Rev Lett ; 124(18): 181101, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441968

RESUMEN

The ringdown and shadow of the astrophysically significant Kerr black hole (BH) are both intimately connected to a special set of bound null orbits known as light rings (LRs). Does it hold that a generic equilibrium BH must possess such orbits? In this Letter we prove the following theorem. A stationary, axisymmetric, asymptotically flat black hole spacetime in 1+3 dimensions, with a nonextremal, topologically spherical, Killing horizon admits, at least, one standard LR outside the horizon for each rotation sense. The proof relies on a topological argument and assumes C^{2} smoothness and circularity, but makes no use of the field equations. The argument is also adapted to recover a previous theorem establishing that a horizonless ultracompact object must admit an even number of nondegenerate LRs, one of which is stable.

3.
Phys Rev Lett ; 123(1): 011101, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31386409

RESUMEN

We construct asymptotically flat, spinning, regular on and outside an event horizon, scalarized black holes (SBHs) in extended scalar-tensor-Gauss-Bonnet models. They reduce to Kerr BHs when the scalar field vanishes. For an illustrative choice of nonminimal coupling, we scan the domain of existence. For each value of spin, SBHs exist in an interval between two critical masses, with the lowest one vanishing in the static limit. Non-uniqueness with Kerr BHs of equal global charges is observed; the SBHs are entropically favoured. This suggests that SBHs form dynamically from the spontaneous scalarization of Kerr BHs, which are prone to a scalar-triggered tachyonic instability, below the largest critical mass. Phenomenologically, the introduction of BH spin damps the maximal observable difference between comparable scalarized and vacuum BHs. In the static limit, (perturbatively stable) SBHs can store over 20% of the spacetime energy outside the event horizon; in comparison with Schwarzschild BHs, their geodesic frequency at the ISCO can differ by a factor of 2.5 and deviations in the shadow areal radius may top 40%. As the BH spin grows, low mass SBHs are excluded, and the maximal relative differences decrease, becoming of the order of a few percent for dimensionless spin j≳0.5. This reveals a spin selection effect: non-GR effects are only significant for low spin. We discuss if and how the recently measured shadow size of the M87 supermassive BH constrains the length scale of the Gauss-Bonnet coupling.

4.
Phys Rev Lett ; 119(25): 251102, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303335

RESUMEN

We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

5.
Phys Rev Lett ; 115(21): 211102, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26636837

RESUMEN

Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA