Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Altern Lab Anim ; 52(1): 42-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38055860

RESUMEN

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across traditional tobacco and various tobacco and nicotine next-generation products (NGPs), including Heated Tobacco Products (HTPs) and Electronic Nicotine Delivery Systems (ENDS). This report was developed by a working group composed of attendees of the seventh IIVS workshop, 'Approaches and recommendations for conducting the mouse lymphoma gene mutation assay (MLA) and introduction to in vitro disease models', which was held virtually on 21-23 June 2022. This publication provides a background overview of the MLA, and includes the description of assay conduct and data interpretation, key challenges and recommended best practices for evaluating tobacco and nicotine products, with a focus on the evaluation of NGPs, and a summary of how the assay has been used to evaluate and compare tobacco and nicotine products.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Animales , Ratones , Técnicas In Vitro , Nicotina , Proyectos de Investigación , Productos de Tabaco/toxicidad
2.
Altern Lab Anim ; 51(1): 55-79, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36821083

RESUMEN

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Nicotiana/toxicidad , Productos de Tabaco/toxicidad , Nicotina/toxicidad , Aerosoles/toxicidad , Técnicas In Vitro
3.
Mutagenesis ; 36(1): 1-17, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33544138

RESUMEN

In vitro test batteries have become the standard approach to determine the genotoxic potential of substances of interest across industry sectors. While useful for hazard identification, standard in vitro genotoxicity assays in 2D cell cultures have limited capability to predict in vivo outcomes and may trigger unnecessary follow-up animal studies or the loss of promising substances where animal tests are prohibited or not desired. To address this problem, a team of regulatory, academia and industry scientists was established to develop and validate 3D in vitro human skin-based genotoxicity assays for use in testing substances with primarily topical exposure. Validation of the reconstructed human skin micronucleus (RSMN) assay in MatTek Epi-200™ skin models involved testing 43 coded chemicals selected by independent experts, in four US/European laboratories. The results were analysed by an independent statistician according to predefined criteria. The RSMN assay showed a reproducibly low background micronucleus frequency and exhibited sufficient capacity to metabolise pro-mutagens. The overall RSMN accuracy when compared to in vivo genotoxicity outcomes was 80%, with a sensitivity of 75% and a specificity of 84%, and the between- and within-laboratory reproducibility was 77 and 84%, respectively. A protocol involving a 72-h exposure showed increased sensitivity in detecting true positive chemicals compared to a 48-h exposure. An analysis of a test strategy using the RSMN assay as a follow-up test for substances positive in standard in vitro clastogenicity/aneugenicity assays and a reconstructed skin Comet assay for substances with positive results in standard gene mutation assays results in a sensitivity of 89%. Based on these results, the RSMN assay is considered sufficiently validated to establish it as a 'tier 2' assay for dermally exposed compounds and was recently accepted into the OECD's test guideline development program.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Bioensayo/métodos , Daño del ADN , Laboratorios/normas , Pruebas de Micronúcleos/métodos , Mutágenos/efectos adversos , Piel/patología , Reacciones Falso Positivas , Humanos , Técnicas In Vitro , Piel/efectos de los fármacos , Piel/metabolismo
4.
Altern Lab Anim ; 45(3): 117-158, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28816053

RESUMEN

In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide.


Asunto(s)
Fumar/efectos adversos , Productos de Tabaco/efectos adversos , Pruebas de Toxicidad/métodos , Aerosoles , Animales , Sistemas Electrónicos de Liberación de Nicotina/efectos adversos , Humanos , Técnicas In Vitro , Especificidad de la Especie , Estados Unidos , United States Food and Drug Administration
5.
Adv Exp Med Biol ; 856: 189-203, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27671723

RESUMEN

New toxicology test methods, especially those using in vitro methods, are continually being developed. Some are used by industry for screening purposes; others are eventually validated for regulatory use. However, for a new test method to be firmly adopted by industry it must be readily available, generally through an in-house industry laboratory, an academic laboratory, or a contract research organization. Regardless of the type of laboratory which intends to implement the test method, certain steps must be taken to ascertain that the method that is put into place is reproducible and performs identically to the test method that was published or has undergone validation. This involves developing protocols and standard operating procedures, training staff, developing historic positive and negative control data, establishing acceptable performance with proficiency chemicals, and addressing all the safety concerns that may accompany the assay. From experience within a contract research laboratory, we provide guidance on how to most efficiently accomplish these tasks.


Asunto(s)
Pruebas de Toxicidad/métodos , Guías como Asunto , Laboratorios/normas , Organización para la Cooperación y el Desarrollo Económico , Pruebas de Toxicidad/normas
6.
Adv Exp Med Biol ; 856: 343-386, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27671730

RESUMEN

The development and validation of scientific alternatives to animal testing is important not only from an ethical perspective (implementation of 3Rs), but also to improve safety assessment decision making with the use of mechanistic information of higher relevance to humans. To be effective in these efforts, it is however imperative that validation centres, industry, regulatory bodies, academia and other interested parties ensure a strong international cooperation, cross-sector collaboration and intense communication in the design, execution, and peer review of validation studies. Such an approach is critical to achieve harmonized and more transparent approaches to method validation, peer-review and recommendation, which will ultimately expedite the international acceptance of valid alternative methods or strategies by regulatory authorities and their implementation and use by stakeholders. It also allows achieving greater efficiency and effectiveness by avoiding duplication of effort and leveraging limited resources. In view of achieving these goals, the International Cooperation on Alternative Test Methods (ICATM) was established in 2009 by validation centres from Europe, USA, Canada and Japan. ICATM was later joined by Korea in 2011 and currently also counts with Brazil and China as observers. This chapter describes the existing differences across world regions and major efforts carried out for achieving consistent international cooperation and harmonization in the validation and adoption of alternative approaches to animal testing.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Cooperación Internacional , Estudios de Validación como Asunto , Animales , Humanos , Toxicología/métodos
7.
Altern Lab Anim ; 44(3): 281-99, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27494627

RESUMEN

In general, no single non-animal method can cover the complexity of any given animal test. Therefore, fixed sets of in vitro (and in chemico) methods have been combined into testing strategies for skin and eye irritation and skin sensitisation testing, with pre-defined prediction models for substance classification. Many of these methods have been adopted as OECD test guidelines. Various testing strategies have been successfully validated in extensive in-house and inter-laboratory studies, but they have not yet received formal acceptance for substance classification. Therefore, under the European REACH Regulation, data from testing strategies can, in general, only be used in so-called weight-of-evidence approaches. While animal testing data generated under the specific REACH information requirements are per se sufficient, the sufficiency of weight-of-evidence approaches can be questioned under the REACH system, and further animal testing can be required. This constitutes an imbalance between the regulatory acceptance of data from approved non-animal methods and animal tests that is not justified on scientific grounds. To ensure that testing strategies for local tolerance testing truly serve to replace animal testing for the REACH registration 2018 deadline (when the majority of existing chemicals have to be registered), clarity on their regulatory acceptance as complete replacements is urgently required.


Asunto(s)
Alternativas a las Pruebas en Animales , Dermatitis por Contacto , Sustancias Peligrosas/toxicidad , Pruebas de Toxicidad/normas , Animales , Unión Europea , Oftalmopatías/inducido químicamente , Lesiones Oculares/inducido químicamente , Legislación de Medicamentos , Enfermedades de la Piel/inducido químicamente
8.
Altern Lab Anim ; 44(2): 129-66, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27256455

RESUMEN

The Family Smoking Prevention and Tobacco Control Act of 2009 established the Food and Drug Administration Center for Tobacco Products (FDA-CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 8-10 December 2014, IIVS organised a workshop conference, entitled Assessment of In Vitro COPD Models for Tobacco Regulatory Science, to bring together stakeholders representing regulatory agencies, academia, industry and animal protection, to address the research priorities articulated by the FDA-CTP. Specific topics were covered to assess the status of current in vitro technologies as they are applied to understanding the adverse pulmonary events resulting from tobacco product exposure, and in particular, the progression of chronic obstructive pulmonary disease (COPD). The four topics covered were: a) Inflammation and Oxidative Stress; b) Ciliary Dysfunction and Ion Transport; c) Goblet Cell Hyperplasia and Mucus Production; and d) Parenchymal/Bronchial Tissue Destruction and Remodelling. The 2.5 day workshop included 18 expert speakers, plus poster sessions, networking and breakout sessions, which identified key findings and provided recommendations to advance the in vitro technologies and assays used to evaluate tobacco-induced disease etiologies. The workshop summary was reported at the 2015 Society of Toxicology Annual Meeting, and the recommendations led to an IIVS-organised technical workshop in June 2015, entitled Goblet Cell Hyperplasia, Mucus Production, and Ciliary Beating Assays, to assess these assays and to conduct a proof-of-principle multi-laboratory exercise to determine their suitability for standardisation. Here, we report on the proceedings, recommendations and outcomes of the December 2014 workshop, including paths forward to continue the development of non-animal methods to evaluate tissue responses that model the disease processes that may lead to COPD, a major cause of mortality worldwide.


Asunto(s)
Regulación Gubernamental , Enfermedad Pulmonar Obstructiva Crónica/etiología , Productos de Tabaco/efectos adversos , Experimentación Animal , Animales , Células Caliciformes/patología , Humanos , Depuración Mucociliar/fisiología , Moco/metabolismo , Nicotina/efectos adversos , Estrés Oxidativo , Productos de Tabaco/normas , Estados Unidos , United States Food and Drug Administration
9.
ALTEX ; 41(2): 179-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629803

RESUMEN

When The Principles of Humane Experimental Technique was published in 1959, authors William Russell and Rex Burch had a modest goal: to make researchers think about what they were doing in the laboratory - and to do it more humanely. Sixty years later, their groundbreaking book was celebrated for inspiring a revolution in science and launching a new field: The 3Rs of alternatives to animal experimentation. On November 22, 2019, some pioneering and leading scientists and researchers in the field gathered at the Johns Hopkins Bloomberg School of Public Health in Bal-timore for the 60 Years of the 3Rs Symposium: Lessons Learned and the Road Ahead. The event was sponsored by the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the Foundation for Chemistry Research and Initiatives, the Alternative Research & Development Foundation (ARDF), the American Cleaning Institute (ACI), the International Fragrance Association (IFRA), the Institute for In Vitro Sciences (IIVS), John "Jack" R. Fowle III, and the Society of Toxicology (SoT). Fourteen pres-entations shared the history behind the groundbreaking publication, international efforts to achieve its aims, stumbling blocks to progress, as well as remarkable achievements. The day was a tribute to Russell and Burch, and a testament to what is possible when people from many walks of life - science, government, and industry - work toward a common goal.


William Russell and Rex Burch published their book The Principles of Humane Experimental Technique in 1959. The book encouraged researchers to replace animal experiments where it was possible, to refine experiments with animals in order to reduce their suffering, and to reduce the number of animals that had to be used for experiments to the minimum. Sixty years later, a group of pioneering and leading scientists and researchers in the field gathered to share how the publi­cation came about and how the vision inspired international collaborations and successes on many different levels including new laws. The paper includes an overview of important milestones in the history of alternatives to animal experimentation.


Asunto(s)
Experimentación Animal , Alternativas a las Pruebas en Animales , Animales , Alternativas a las Pruebas en Animales/métodos , Bienestar del Animal , Proyectos de Investigación
10.
Mutat Res ; 750(1-2): 40-9, 2013 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-23022594

RESUMEN

The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm™ is a promising new assay for evaluating genotoxicity of dermally applied chemicals. A global pre-validation project sponsored by the European Cosmetics Association (Cosmetics Europe - formerly known as COLIPA), and the European Center for Validation of Alternative Methods (ECVAM), is underway. Results to date demonstrate international inter-laboratory and inter-experimental reproducibility of the assay for chemicals that do not require metabolism [Aardema et al., Mutat. Res. 701 (2010) 123-131]. We have expanded these studies to investigate chemicals that do require metabolic activation: 4-nitroquinoline-N-oxide (4NQO), cyclophosphamide (CP), dimethylbenzanthracene (DMBA), dimethylnitrosamine (DMN), dibenzanthracene (DBA) and benzo(a)pyrene (BaP). In this study, the standard protocol of two applications over 48h was compared with an extended protocol involving three applications over 72h. Extending the treatment period to 72h changed the result significantly only for 4NQO, which was negative in the standard 48h dosing regimen, but positive with the 72h treatment. DMBA and CP were positive in the standard 48h assay (CP induced a more reproducible response with the 72h treatment) and BaP gave mixed results; DBA and DMN were negative in both the 48h and the 72h dosing regimens. While further work with chemicals that require metabolism is needed, it appears that the RMSN assay detects some chemicals that require metabolic activation (4 out of 6 chemicals were positive in one or both protocols). At this point in time, for general testing, the use of a longer treatment period in situations where the standard 48h treatment is negative or questionable is recommended.


Asunto(s)
Biotransformación , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Piel/efectos de los fármacos , Ingeniería de Tejidos/métodos , Cosméticos/efectos adversos , Daño del ADN , Relación Dosis-Respuesta a Droga , Humanos , Factores de Tiempo
11.
Regul Toxicol Pharmacol ; 65(3): 344-65, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23246604

RESUMEN

Assessing chemicals for acute oral toxicity is a standard information requirement of regulatory testing. However, animal testing is now prohibited in the cosmetics sector in Europe, and strongly discouraged for industrial chemicals. Building on the results of a previous international validation study, a follow up study was organised to assess if the 3T3 Neutral Red Uptake cytotoxicity assay could identify substances not requiring classification as acute oral toxicants under the EU regulations. Fifty-six coded industrial chemicals were tested in three laboratories, each using one of the following protocols: the previously validated protocol, an abbreviated version of the protocol and the protocol adapted for an automation platform. Predictions were very similar among the three laboratories. The assay exhibited high sensitivity (92-96%) but relatively low specificity (40-44%). Three chemicals were under predicted. Assuming that most industrial chemicals are not likely to be acutely toxic, this test method could prove a valuable component of an integrated testing strategy, a read-across argument, or weight-of-evidence approach to identify non toxic chemicals (LD50>2000 mg/kg). However, it is likely to under predict chemicals acting via specific mechanisms of action not captured by the 3T3 test system, or which first require biotransformation in vivo.


Asunto(s)
Alternativas a las Pruebas en Animales , Fibroblastos/efectos de los fármacos , Pruebas de Toxicidad/métodos , Xenobióticos/toxicidad , Animales , Células 3T3 BALB , Supervivencia Celular/efectos de los fármacos , Colorantes/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Rojo Neutro/metabolismo , Valor Predictivo de las Pruebas
12.
Drug Test Anal ; 15(10): 1175-1188, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35830202

RESUMEN

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across tobacco and various next-generation products (NGPs) including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDSs). This publication was developed by a working group of the workshop members in conjunction with the sixth workshop in that series entitled "Dosimetry for conducting in vitro evaluations" and focuses on aerosol dosimetry for aerosol exposure to combustible cigarettes, HTP, and ENDS aerosolized tobacco products and summarizes the key challenges as well as documenting areas for future research.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Nicotiana , Aerosoles , Técnicas In Vitro
13.
Mutat Res ; 723(2): 101-7, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21473931

RESUMEN

Improving current in vitro genotoxicity tests is an ongoing task for genetic toxicologists. Further, the question on how to deal with positive in vitro results that are demonstrated to not predict genotoxicity or carcinogenicity potential in rodents or humans is a challenge. These two aspects were addressed at the 5th International Workshop on Genotoxicity Testing (IWGT) held in Basel, Switzerland, on August 17-19, 2009. The objectives of the working group (WG) were to make recommendations on the use of cell types or lines, if possible, and to provide evaluations of promising new approaches. Results obtained in rodent cell lines with impaired p53 function (L5178Y, V79, CHL and CHO cells) and human p53-competent cells (peripheral blood lymphocytes, TK6 and HepG2 cells) suggest that a reduction in the percentage of non-relevant positive results for carcinogenicity prediction can be achieved by careful selection of cells used without decreasing the sensitivity of the assays. Therefore, the WG suggested using p53- competent - preferably human - cells in in vitro micronucleus or chromosomal aberration tests. The use of the hepatoma cell line HepaRG for genotoxicity testing was considered promising since these cells possess better phase I and II metabolizing potential compared to cell lines commonly used in this area and may overcome the need for the addition of S9. For dermally applied compounds, the WG agreed that in vitro reconstructed skin models, once validated, will be useful to follow up on positive results from standard in vitro assays as they resemble the properties of human skin (barrier function, metabolism). While the reconstructed skin micronucleus assay has been shown to be further advanced, there was also consensus that the Comet assay should be further evaluated due to its independence from cell proliferation and coverage of a wider spectrum of DNA damage.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/tendencias , Animales , Línea Celular , Aberraciones Cromosómicas , Guías como Asunto , Humanos , Pruebas de Micronúcleos/métodos , Valor Predictivo de las Pruebas
14.
Mutat Res ; 720(1-2): 42-52, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21147256

RESUMEN

The European Cosmetic Toiletry and Perfumery Association (COLIPA), along with contributions from the European Centre for the Validation of Alternative Methods (ECVAM), initiated a multi-lab international prevalidation project on the reconstructed skin micronucleus (RSMN) assay in EpiDerm™ for the assessment of the genotoxicity of dermally applied chemicals. The first step of this project was to standardize the protocol and transfer it to laboratories that had not performed the assay before. Here we describe in detail the protocol for the RSMN assay in EpiDerm™ and the harmonized guidelines for scoring, with an atlas of cell images. We also describe factors that can influence the performance of the assay. Use of these methods will help new laboratories to conduct the assay, thereby further increasing the database for this promising new in vitro genotoxicity test.


Asunto(s)
Pruebas de Micronúcleos/métodos , Pruebas de Irritación de la Piel/métodos , Pruebas de Irritación de la Piel/normas , Guías como Asunto , Humanos , Pruebas de Micronúcleos/normas , Pruebas de Micronúcleos/estadística & datos numéricos , Mutágenos/toxicidad , Piel , Ingeniería de Tejidos/métodos , Estudios de Validación como Asunto
15.
Altern Lab Anim ; 39(1): 37-53, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21452913

RESUMEN

Data on eye irritation are generally needed for the hazard identification of chemicals. As the Bovine Corneal Opacity and Permeability (BCOP) test has been accepted by many regulatory agencies for the identification of corrosive and severe ocular irritants since September 2009 (OECD Test Guideline 437, TG 437), we evaluated this alternative method for routine testing at BASF. We demonstrated our technical proficiency by testing the reference standards recommended in TG 437, and 21 additional materials with published BCOP and in vivo data. Our results matched the published in vitro data very well, but with some intentionally selected false negatives (FNs) and false positives (FPs), the concordance was 77% (24/31), with FN and FP rates of 20% (2/10) and 24% (5/21), respectively. In addition, we tested 21 in-house materials, demonstrating the utility of the BCOP assay for our own test material panel. Histopathological assessment of the corneas by light microscopy was also conducted, as this was suggested as a means of improving the identification of FNs. The histopathology corrected the classification of some FNs, but also increased the number of FPs. Parallel to the test method evaluation, we compared three new opacitometer models with the current standard device. We recommend the use of an opacitometer developed in our BASF laboratory, which has certified components and electronic data storage, resulting in what we consider to be excellent sensitivity, stability and reproducibility.


Asunto(s)
Alternativas a las Pruebas en Animales , Cáusticos/toxicidad , Opacidad de la Córnea/inducido químicamente , Epitelio Corneal/efectos de los fármacos , Irritantes/toxicidad , Alternativas a las Pruebas en Animales/instrumentación , Animales , Bovinos , Opacidad de la Córnea/metabolismo , Opacidad de la Córnea/patología , Equipo para Diagnóstico , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Permeabilidad , Reproducibilidad de los Resultados
16.
Mutat Res ; 701(2): 123-31, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20621637

RESUMEN

Recently, a novel in vitro reconstructed skin micronucleus (RSMN) assay incorporating the EpiDerm 3D human skin model (Curren et al., Mutat. Res. 607 (2006) 192-204; Mun et al., Mutat. Res. 673 (2009) 92-99) has been shown to produce comparable data when utilized in three different laboratories in the United States (Hu et al., Mutat. Res. 673 (2009) 100-108). As part of a project sponsored by the European cosmetics companies trade association (COLIPA), with a contribution from the European Center for the Validation of Alternative Methods (ECVAM), international prevalidation studies of the RSMN assay have been initiated. The assay was transferred and optimized in two laboratories in Europe, where dose-dependent, reproducibly positive results for mitomycin C and vinblastine sulfate were obtained. Further intra- and inter-laboratory reproducibility of the RSMN assay was established by testing three coded chemicals, N-ethyl-N-nitrosourea, cyclohexanone, and mitomycin C. All chemicals were correctly identified by all laboratories as either positive or negative. These results support the international inter-laboratory and inter-experimental reproducibility of the assay and reinforce the conclusion that the RSMN assay in the EpiDerm 3D human skin model is a valuable in vitro method for assessment of genotoxicity of dermally applied chemicals.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Pruebas de Irritación de la Piel/métodos , Piel , Ingeniería de Tejidos , Humanos , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Reproducibilidad de los Resultados
17.
Artículo en Inglés | MEDLINE | ID: mdl-32247552

RESUMEN

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.


Asunto(s)
Daño del ADN/efectos de los fármacos , Metagenómica/tendencias , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Daño del ADN/genética , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Pruebas de Micronúcleos
18.
Mutat Res ; 673(2): 100-8, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19167513

RESUMEN

A novel in vitro human reconstructed skin micronucleus (RSMN) assay has been developed using the EpiDerm 3D human skin model [R. D. Curren, G. C. Mun, D. P. Gibson, and M. J. Aardema, Development of a method for assessing micronucleus induction in a 3D human skin model EpiDerm, Mutat. Res. 607 (2006) 192-204]. The RSMN assay has potential use in genotoxicity assessments as a replacement for in vivo genotoxicity assays that will be banned starting in 2009 according to the EU 7th Amendment to the Cosmetics Directive. Utilizing EpiDerm tissues reconstructed with cells from four different donors, intralaboratory and interlaboratory reproducibility of the RSMN assay were examined. Seven chemicals were evaluated in three laboratories using a standard protocol. Each chemical was evaluated in at least two laboratories and in EpiDerm tissues from at least two different donors. Three model genotoxins, mitomycin C (MMC), vinblastine sulfate (VB) and methyl methanesulfonate (MMS) induced significant, dose-related increases in cytotoxicity and MN induction in EpiDerm tissues. Conversely, four dermal non-carcinogens, 4-nitrophenol (4-NP), trichloroethylene (TCE), 2-ethyl-1,3-hexanediol (EHD), and 1,2-epoxydodecane (EDD) were negative in the RSMN assay. Results between tissues reconstructed from different donors were comparable. These results indicate the RSMN assay using the EpiDerm 3D human skin model is a promising new in vitro genotoxicity assay that allows evaluation of chromosome damage following "in vivo-like" dermal exposures.


Asunto(s)
Pruebas de Irritación de la Piel/métodos , Piel , Ingeniería de Tejidos/métodos , Alternativas a las Pruebas en Animales/métodos , Alternativas a las Pruebas en Animales/normas , Epidermis/efectos de los fármacos , Epidermis/fisiología , Glicoles/toxicidad , Humanos , Laboratorios/normas , Metilmetanosulfonato/toxicidad , Pruebas de Micronúcleos/métodos , Mitomicina/toxicidad , Mutágenos/toxicidad , Nitrofenoles/toxicidad , Reproducibilidad de los Resultados , Piel/citología , Pruebas de Irritación de la Piel/normas , Tricloroetileno/toxicidad , Vinblastina/toxicidad
19.
Mutat Res ; 673(2): 92-9, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19167515

RESUMEN

The upcoming ban on testing of cosmetics in animals by the European Union's 7th Amendment to the Cosmetics Directive will require genotoxicity safety assessments of cosmetics ingredients and final formulations to be based primarily on in vitro genotoxicity tests. The current in vitro test battery produces an unacceptably high rate of false positives, and used by itself would effectively prevent the use and development of many ingredients that are actually safe for human use. To address the need for an in vitro test that is more predictive of genotoxicity in vivo, we have developed an in vitro micronucleus assay using a three-dimensional human reconstructed skin model (EpiDerm) that more closely mimics the normal dermal exposure route of chemicals. We have refined this model and assessed its ability to predict genotoxicity of a battery of chemicals that have been previously classified as genotoxins or non-genotoxins based on in vivo rodent skin tests. Our reconstructed skin micronucleus assay correctly identified 7 genotoxins and 5 non-genotoxins, demonstrating its potential to have a higher predictive value than currently available in vitro genotoxicity tests, and its utility as part of a comprehensive in vitro genotoxicity testing strategy.


Asunto(s)
Pruebas de Irritación de la Piel/métodos , Piel , Ingeniería de Tejidos/métodos , Alternativas a las Pruebas en Animales/métodos , Calibración , Citocalasina B/farmacología , Relación Dosis-Respuesta a Droga , Epidermis/efectos de los fármacos , Epidermis/fisiología , Humanos , Pruebas de Micronúcleos/métodos , Mutágenos/farmacología , Sensibilidad y Especificidad , Piel/citología , Factores de Tiempo
20.
Altern Lab Anim ; 37(6): 623-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20104998

RESUMEN

During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Cosméticos/normas , Productos Domésticos/normas , Técnicas de Cultivo de Tejidos/métodos , Alternativas a las Pruebas en Animales/normas , Alternativas a las Pruebas en Animales/tendencias , Bienestar del Animal , Animales , Animales de Laboratorio , Técnicas de Cultivo de Tejidos/normas , Técnicas de Cultivo de Tejidos/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA