Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 16(4): e1007773, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32294079

RESUMEN

Evolutionarily conserved mechanisms maintain homeostasis of essential elements, and are believed to be highly time-variant. However, current approaches measure elemental biomarkers at a few discrete time-points, ignoring complex higher-order dynamical features. To study dynamical properties of elemental homeostasis, we apply laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) to tooth samples to generate 500 temporally sequential measurements of elemental concentrations from birth to 10 years. We applied dynamical system and Information Theory-based analyses to reveal the longest-known attractor system in mammalian biology underlying the metabolism of nutrient elements, and identify distinct and consistent transitions between stable and unstable states throughout development. Extending these dynamical features to disease prediction, we find that attractor topography of nutrient metabolism is altered in amyotrophic lateral sclerosis (ALS), as early as childhood, suggesting these pathways are involved in disease risk. Mechanistic analysis was undertaken in a transgenic mouse model of ALS, where we find similar marked disruptions in elemental attractor systems as in humans. Our results demonstrate the application of a phenomological analysis of dynamical systems underlying elemental metabolism, and emphasize the utility of these measures in characterizing risk of disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Cobre/análisis , Diente/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Niño , Preescolar , Biología Computacional , Cobre/sangre , Cobre/orina , Femenino , Homeostasis , Humanos , Lactante , Masculino , Espectrometría de Masas , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Curva ROC , Riesgo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
2.
Entropy (Basel) ; 23(12)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34945939

RESUMEN

Metabolism and physiology frequently follow non-linear rhythmic patterns which are reflected in concepts of homeostasis and circadian rhythms, yet few biomarkers are studied as dynamical systems. For instance, healthy human development depends on the assimilation and metabolism of essential elements, often accompanied by exposures to non-essential elements which may be toxic. In this study, we applied laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to reconstruct longitudinal exposure profiles of essential and non-essential elements throughout prenatal and early post-natal development. We applied cross-recurrence quantification analysis (CRQA) to characterize dynamics involved in elemental integration, and to construct a graph-theory based analysis of elemental metabolism. Our findings show how exposure to lead, a well-characterized toxicant, perturbs the metabolism of essential elements. In particular, our findings indicate that high levels of lead exposure dysregulate global aspects of metabolic network connectivity. For example, the magnitude of each element's degree was increased in children exposed to high lead levels. Similarly, high lead exposure yielded discrete effects on specific essential elements, particularly zinc and magnesium, which showed reduced network metrics compared to other elements. In sum, this approach presents a new, systems-based perspective on the dynamics involved in elemental metabolism during critical periods of human development.

3.
J Clin Med ; 12(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36769671

RESUMEN

Autism is a neurodevelopmental condition associated with atypical social communication, cognitive, and sensory faculties. Recent advances in exposure biology suggest that biomarkers of elemental uptake and metabolism measured in hair samples can yield an effective signal predictive of autism diagnosis. Here, we investigated if elemental biomarkers in hair were associated with functional connectivity in regions of the default mode network (DMN) previously linked to autism. In a study sample which included twin pairs with concordant and discordant diagnoses for autism, our analysis of hair samples and neuroimaging data supported two general findings. First, independent of autism diagnosis, we found a broad pattern of association between elemental biomarkers and functional connectivity in the DMN, which primarily involved dynamics in zinc metabolism. Second, we found that associations between the DMN and elemental biomarkers, particularly involving phosphorus, calcium, manganese, and magnesium, differed significantly in autistic participants from control participants. In sum, these findings suggest that functional dynamics in elemental metabolism relate broadly to persistent patterns of functional connectivity in the DMN, and that these associations are altered in the emergence of autism.

4.
Biol Psychiatry ; 91(11): 956-966, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227462

RESUMEN

BACKGROUND: Altered resting-state functional connectivity in the default mode network (DMN) is characteristic of both autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Standard analytical pipelines for resting-state functional connectivity focus on linear correlations in activation time courses between neural networks or regions of interest. These features may be insensitive to temporally lagged or nonlinear relationships. METHODS: In a twin cohort study comprising 292 children, including 52 with a diagnosis of ASD and 70 with a diagnosis of ADHD, we applied nonlinear analytical methods to characterize periodic dynamics in the DMN. Using recurrence quantification analysis and related methods, we measured the prevalence, duration, and complexity of periodic processes within and between DMN regions of interest. We constructed generalized estimating equations to compare these features between neurotypical children and children with ASD and/or ADHD while controlling for familial relationships, and we leveraged machine learning algorithms to construct models predictive of ASD or ADHD diagnosis. RESULTS: In within-pair analyses of twins with discordant ASD diagnoses, we found that DMN signal dynamics were significantly different in dizygotic twins but not in monozygotic twins. Considering our full sample, we found that these patterns allowed a robust predictive classification of both ASD (81.0% accuracy; area under the curve = 0.85) and ADHD (82% accuracy; area under the curve = 0.87) cases. CONCLUSIONS: These findings indicate that synchronized periodicity among regions comprising the DMN relates both to neurotypical function and to ASD and/or ADHD, and they suggest generally that a dynamical analysis of network interconnectivity may be a useful methodology for future neuroimaging studies.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Niño , Estudios de Cohortes , Red en Modo Predeterminado , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
5.
J Clin Med ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36498727

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition diagnosed in approximately 2% of children. Reliance on the emergence of clinically observable behavioral patterns only delays the mean age of diagnosis to approximately 4 years. However, neural pathways critical to language and social functions develop during infancy, and current diagnostic protocols miss the age when therapy would be most effective. We developed non-invasive ASD biomarkers using mass spectrometry analyses of elemental metabolism in single hair strands, coupled with machine learning. We undertook a national prospective study in Japan, where hair samples were collected at 1 month and clinical diagnosis was undertaken at 4 years. Next, we analyzed a national sample of Swedish twins and, in our third study, participants from a specialist ASD center in the US. In a blinded analysis, a predictive algorithm detected ASD risk as early as 1 month with 96.4% sensitivity, 75.4% specificity, and 81.4% accuracy (n = 486; 175 cases). These findings emphasize that the dynamics in elemental metabolism are systemically dysregulated in autism, and these signatures can be detected and leveraged in hair samples to predict the emergence of ASD as early as 1 month of age.

6.
Transl Psychiatry ; 9(1): 238, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31551411

RESUMEN

Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental conditions of overlapping etiologies and phenotypes. For ASD, we recently reported altered elemental metabolic patterns in the form of short and irregular zinc and copper cycles. Here, we extend the application of these biomarkers of prenatal and early postnatal elemental metabolism to distinguish between individuals diagnosed with ADHD and/or ASD and neurotypical controls. We recruited twins discordant for ADHD, ASD and other neurodevelopmental diagnoses from national twin studies in Sweden (N = 74) diagnosed according to DSM-5 clinical consensus and standardized psychiatric instruments. Detailed temporal profiles of exposure to 10 metals over the prenatal and early childhood periods were measured using tooth biomarkers. We used recurrence quantification analysis (RQA) to characterize properties of cyclical metabolic patterns of these metals. Regularity (determinism) and complexity (entropy) of elemental cycles was consistently reduced in ADHD for cobalt, lead, and vanadium (determinism: cobalt, ß = -0.03, P = 0.017; lead, ß = -0.03, P = 0.016; and vanadium, ß = -0.03, P = 0.01. Entropy: cobalt, ß = -0.13, P = 0.017; lead, ß = -0.18, P = 0.016; and vanadium, ß = -0.15, P = 0.008). Further, we found elemental pathways and dynamical features specific to ADHD vs ASD, and unique characteristics associated with ADHD/ASD combined presentation. Dysregulation of cyclical processes in elemental metabolism during prenatal and early postnatal development not only encompasses pathways shared by ADHD and ASD, but also comprise features specific to either condition.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno del Espectro Autista/diagnóstico , Cobalto/metabolismo , Plomo/metabolismo , Vanadio/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno del Espectro Autista/metabolismo , Niño , Diagnóstico Diferencial , Enfermedades en Gemelos/diagnóstico , Enfermedades en Gemelos/metabolismo , Femenino , Humanos , Masculino
7.
Neurotoxicology ; 64: 103-109, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917719

RESUMEN

BACKGROUND: Manganese (Mn) is an essential metal that can become neurotoxic at elevated levels with negative consequences on neurodevelopment. We have evaluated the influence of single nucleotide polymorphisms (SNPs) in Mn transporter genes SLC30A10 and SLC39A8 on Mn concentrations in dentine, a validated biomarker that reflects Mn tissue concentrations early in life. METHODS: The study included 195 children with variable environmental Mn exposure. Mn concentrations in dentine representing fetal, early postnatal and early childhood developmental periods were measured using laser ablation-inductively coupled plasma mass spectrometry. SLC30A10 rs12064812 (T/C) and SLC39A8 rs13107325 (C/T) were genotyped by TaqMan real time PCR and SLC30A10 rs1776029 (G/A) by pyrosequencing; and SNPs were analyzed in association with Mn in dentine. RESULTS: SLC39A8 rs13107325 rare allele (T) carriers had significantly higher Mn concentrations in postnatal dentine (110%, p=0.008). For all SNPs we also observed non-significant associations with Mn concentrations in dentine in opposite directions for fetal and early postnatal periods. Furthermore, there were significant differences in the influence of SLC30A10 rs1776929 genotypes on Mn concentrations in dentine between sexes. DISCUSSION: The findings from this study indicate that common SNPs in Mn transporters influence Mn homeostasis in early development and may therefore be important to consider in future studies of early life Mn exposure and health effects. Our results also suggest that the influence of these transporters on Mn regulation may differ by developmental stage, as well as between girls and boys.


Asunto(s)
Proteínas de Transporte de Catión/genética , Desarrollo Infantil , Manganeso/metabolismo , Polimorfismo de Nucleótido Simple , Diente Primario/metabolismo , Transportador 8 de Zinc/genética , Adolescente , Niño , Dentina/metabolismo , Exposición a Riesgos Ambientales , Femenino , Humanos , Masculino , Caracteres Sexuales
8.
Sci Adv ; 4(5): eaat1293, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29854952

RESUMEN

Metals are critical to neurodevelopment, and dysregulation in early life has been documented in autism spectrum disorder (ASD). However, underlying mechanisms and biochemical assays to distinguish ASD cases from controls remain elusive. In a nationwide study of twins in Sweden, we tested whether zinc-copper cycles, which regulate metal metabolism, are disrupted in ASD. Using novel tooth-matrix biomarkers that provide direct measures of fetal elemental uptake, we developed a predictive model to distinguish participants who would be diagnosed with ASD in childhood from those who did not develop the disorder. We replicated our findings in three independent studies in the United States and the UK. We show that three quantifiable characteristics of fetal and postnatal zinc-copper rhythmicity are altered in ASD: the average duration of zinc-copper cycles, regularity with which the cycles recur, and the number of complex features within a cycle. In all independent study sets and in the pooled analysis, zinc-copper rhythmicity was disrupted in ASD cases. In contrast to controls, in ASD cases, the cycle duration was shorter (F = 52.25, P < 0.001), regularity was reduced (F = 47.99, P < 0.001), and complexity diminished (F = 57.30, P < 0.001). With two distinct classification models that used metal rhythmicity data, we achieved 90% accuracy in classifying cases and controls, with sensitivity to ASD diagnosis ranging from 85 to 100% and specificity ranging from 90 to 100%. These findings suggest that altered zinc-copper rhythmicity precedes the emergence of ASD, and quantitative biochemical measures of metal rhythmicity distinguish ASD cases from controls.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Cobre/metabolismo , Zinc/metabolismo , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/etiología , Biomarcadores , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Espectrometría de Masas , Embarazo , Pronóstico , Curva ROC , Sensibilidad y Especificidad
9.
PLoS One ; 12(11): e0187049, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29112980

RESUMEN

Environmental exposures to essential and toxic elements may alter health trajectories, depending on the timing, intensity, and mixture of exposures. In epidemiologic studies, these factors are typically analyzed as a function of elemental concentrations in biological matrices measured at one or more points in time. Such an approach, however, fails to account for the temporal cyclicity in the metabolism of environmental chemicals, which if perturbed may lead to adverse health outcomes. Here, we conceptualize and apply a non-linear method-recurrence quantification analysis (RQA)-to quantify cyclical components of prenatal and early postnatal exposure profiles for elements essential to normal development, including Zn, Mn, Mg, and Ca, and elements associated with deleterious health effects or narrow tolerance ranges, including Pb, As, and Cr. We found robust evidence of cyclical patterns in the metabolic profiles of nutrient elements, which we validated against randomized twin-surrogate time-series, and further found that nutrient dynamical properties differ from those of Cr, As, and Pb. Furthermore, we extended this approach to provide a novel method of quantifying dynamic interactions between two environmental exposures. To achieve this, we used cross-recurrence quantification analysis (CRQA), and found that elemental nutrient-nutrient interactions differed from those involving toxicants. These rhythmic regulatory interactions, which we characterize in two geographically distinct cohorts, have not previously been uncovered using traditional regression-based approaches, and may provide a critical unit of analysis for environmental and dietary exposures in epidemiological studies.


Asunto(s)
Exposición a Riesgos Ambientales , Desarrollo Fetal , Crecimiento , Sustancias Peligrosas/toxicidad , Femenino , Humanos , Masculino , Exposición Materna , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA