Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunol Invest ; 46(8): 833-846, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29058549

RESUMEN

We synthesized and characterized curcumin-stabilized silver nanoparticles (Cur-AgNP) and found them to be 45 nm by dynamic light scattering with a maximum absorbance at 406 nm. We evaluated Cur-AgNP for immunomodulatory activities and their potential as an antiretroviral agent. The antiretroviral effects of Cur-AgNP were determined in ACH-2 cells latently infected with human immunodeficiency virus (HIV)-1. ACH-2 cells, 200,000/ml, were treated with Cur-AgNP for 24-48 h. Expression of HIV-1 LTR and p24, the pro-inflammatory cytokines, IL-1ß, TNF-α, and NF-κB was quantitated. Treatment of ACH-2 cells latently infected with HIV-1 with Cur-AgNP produced no toxic effects but significantly inhibited the expression of HIV-1 LTR (-73%, P < 0.01) and p24 (-57%, P < 0.05), IL-1ßα (-61%, P < 0.01), TNF-αα (-54%, P < 0.05), IL-6 (-68%, P < 0.01), and NF-κB (-79%, P < 0.0001) as compared to untreated controls. Thus, Cur-AgNP have therapeutic potential as direct antiretroviral agents, as well as having immunomodulatory activities inhibiting the expression of pro-inflammatory mediators induced by infection with HIV-1. Experimental controls, such as curcumin alone, and conventional silver nanoparticles capped with citric acid, produced no similar biological effects. We conclude that treatment of HIV-1 infected cells with Cur-AgNP significantly reduced replication of HIV by inhibition of NF-κB nuclear translocation and the downstream expression of the pro-inflammatory cytokines IL-1ß, TNF-α, and IL-6. Subsequent in vivo studies with Cur-AgNP using a humanized mouse model of HIV infection are underway.


Asunto(s)
Antirretrovirales/farmacología , Curcumina/farmacología , Infecciones por VIH/inmunología , VIH-1/fisiología , Factores Inmunológicos/farmacología , Nanopartículas del Metal/uso terapéutico , Linfocitos T/inmunología , Línea Celular , Curcumina/química , Citocinas/metabolismo , Regulación de la Expresión Génica , Proteína p24 del Núcleo del VIH/metabolismo , Duplicado del Terminal Largo de VIH/genética , Humanos , Mediadores de Inflamación/metabolismo , Nanopartículas del Metal/química , FN-kappa B/metabolismo , Plata/química , Linfocitos T/patología , Linfocitos T/virología , Latencia del Virus , Replicación Viral
2.
Immunol Invest ; 46(8): 816-832, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29058550

RESUMEN

The complement system which is a critical mediator of innate immunity plays diverse roles in the neuropathogenesis of HIV-1 infection such as clearing HIV-1 and promoting productive HIV-1 replication. In the development of HIV-1 associated neurological disorders (HAND), there may be an imbalance between complement activation and regulation, which may contribute to the neuronal damage as a consequence of HIV-1 infection. It is well recognized that opiate abuse exacerbates HIV-1 neuropathology, however, little is known about the role of complement proteins in opiate induced neuromodulation, specifically in the presence of co-morbidity such as HIV-1 infection. Complement levels are significantly increased in the HIV-1-infected brain, thus HIV-induced complement synthesis may represent an important mechanism for the pathogenesis of AIDS in the brain, but remains underexplored. Anti-HIV-1 antibodies are able to initiate complement activation in HIV-1 infected CNS cells such as microglia and astrocytes during the course of disease progression; however, this complement activation fails to clear and eradicate HIV-1 from infected cells. In addition, the antiretroviral agents used for HIV therapy cause dysregulation of lipid metabolism, endothelial, and adipocyte cell function, and activation of pro-inflammatory cytokines. We speculate that both HIV-1 and opiates trigger a cytokine-mediated pro-inflammatory stimulus that modulates the complement cascade to exacerbate the virus-induced neurological damage. We examined the expression levels of C1q, SC5b-9, C5L2, C5aR, C3aR, and C9 key members of the complement cascade both in vivo in post mortem brain frontal cortex tissue from patients with HAND who used/did not use heroin, and in vitro using human microglial cultures treated with HIV tat and/or heroin. We observed significant expression of C1q and SC5b-9 by immunofluorescence staining in both the brain cortical and hippocampal region in HAND patients who abused heroin. Additionally, we observed increased gene expression of C5aR, C3aR, and C9 in the brain tissue of both HIV-1 infected patients with HAND who abused and did not abuse heroin, as compared to HIV negative controls. Our results show a significant increase in the expression of complement proteins C9, C5L2, C5aR, and C3aR in HIV transfected microglia and an additional increase in the levels of these complement proteins in heroin-treated HIV transfected microglia. This study highlights the a) potential roles of complement proteins in the pathogenesis of HIV-1-related neurodegenerative disorders; b) the combined effect of an opiate, like heroin, and HIV viral protein like HIV tat on complement proteins in normal human microglial cells and HIV transfected microglial cells. In the context of HAND, targeting selective steps in the complement cascade could help ameliorating the HIV burden in the CNS, thus investigations of complement-related therapeutic approaches for the treatment of HAND are warranted.


Asunto(s)
Nefropatía Asociada a SIDA/inmunología , Proteínas del Sistema Complemento/metabolismo , Lóbulo Frontal/metabolismo , Infecciones por VIH/inmunología , VIH-1/fisiología , Dependencia de Heroína/inmunología , Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Nefropatía Asociada a SIDA/epidemiología , Cadáver , Células Cultivadas , Comorbilidad , Activación de Complemento , Citocinas/metabolismo , Infecciones por VIH/epidemiología , Dependencia de Heroína/epidemiología , Humanos , Inmunomodulación , Microglía/patología , Microglía/virología , Regulación hacia Arriba , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
3.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765857

RESUMEN

The standard of care chemotherapy drug presently used to treat castration-resistant prostate cancer (CRPC), docetaxel (Doc), also develops chemoresistance, thereby reducing its clinical utility. Since resistance to chemotherapy drugs can be overcome by co-treatment with plant-based bio-active compounds we undertook the present study to evaluate if quercetin (Que), a flavonoid present in plants such as onions, apples, olives, and grapes can enhance the efficacy of Doc. We studied the separate and combined effects of Que and Doc at different doses and different combination approaches in two different prostate cancer cell lines, DU-145 (moderately aggressive) and PC-3 (very aggressive), and assessed the effects of these combinations on viability, proliferation, and apoptosis. Monotherapy with these drugs showed dose-dependent cytotoxicity; however, only Doc monotherapy showed a statistically significant difference in IC50 levels (IC50 = 4.05 ± 0.52 nM for PC-3 and IC50 = 2.26 ± 0.22 nM for DU-145). In combination treatment, we used three different treatment approaches (TAP). The concentrations and range analyzed were chosen based on the approximate cytotoxicity of 30-50% when the drugs were used individually. Our observations indicate that the most beneficial effect of the Que and Doc combination was obtained with the TAP-2 approach, which is pre-treatment with all doses of Que for 24 h followed by low doses of Doc for another 24 h. Using this approach, we observed synergism at low concentrations of Doc (0.5 and 1.0 nM) and all concentrations of Que. An additive effect was observed at moderate and high concentrations of Doc (1.5, 2.0, and 2.5 nM) and all concentrations of Que in both cell lines. The TAP-2 strategy was also helpful in overcoming Doc resistance in resistant CaP cells. In summary, Que improved the therapeutic effect of Doc in CRPC, and it is proposed that this improvement is mediated through multiple mechanisms. This study provides a novel therapeutic modality for an effective combination using Doc and Que to enhance the efficacy of Doc in an innocuous manner for Doc resistance and CRPC treatment.

4.
J Clin Pathol ; 75(5): 345-349, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33649141

RESUMEN

AIMS: To determine if a simple prewash step added to the processing workflow of tissue procurement by a core needle biopsy device will recover enough cells to expand the laboratory testing armamentarium. METHODS: Tissue was obtained from unfixed resection specimens using a core needle device and washed in a buffered solution before fixation. This creates a liquid aliquot from which dislodged cells can be kept and separated from the tissue specimen, the latter of which can then undergo traditional formalin-fixed, paraffin-embedded processing. RESULTS: Cells dislodged from the tissue during the biopsy procedure are recoverable, are representative of the tissue section and of sufficient quantities for additional laboratory testing. CONCLUSIONS: The core needle biopsy wash is an under-recognised and underutilised approach to extending the diagnostic capabilities of the limited amount of targeted material obtained during this common procedure. The ability to recover supplemental amounts of diagnostic material yields great potential as a substrate for a multitude of current and developing laboratory assays.


Asunto(s)
Biopsia con Aguja Gruesa , Biopsia , Biopsia con Aguja Gruesa/métodos , Humanos
5.
Cancers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681683

RESUMEN

Galectins and prostate specific membrane antigen (PSMA) are glycoproteins that are functionally implicated in prostate cancer (CaP). We undertook this study to analyze the "PSMA-galectin pattern" of the human CaP microenvironment with the overarching goal of selecting novel-molecular targets for prognostic and therapeutic purposes. We examined CaP cells and biopsy samples representing different stages of the disease and found that PSMA, Gal-1, Gal-3, and Gal-8 are the most abundantly expressed glycoproteins. In contrast, other galectins such as Gal-2, 4-7, 9-13, were uniformly expressed at lower levels across all cell lines. However, biopsy samples showed markedly higher expression of PSMA, Gal-1 and Gal-3. Independently PSA and Gleason score at diagnosis correlated with the expression of PSMA, Gal-3. Additionally, the combined index of PSMA and Gal-3 expression positively correlated with Gleason score and was a better predictor of tumor aggressiveness. Together, our results recognize a tightly regulated "PSMA-galectin- pattern" that accompanies disease in CaP and highlight a major role for the combined PSMA and Gal-3 inhibitors along with standard chemotherapy for prostate cancer treatment. Inhibitor combination studies show enzalutamide (ENZ), 2-phosphonomethyl pentanedioic acid (2-PMPA), and GB1107 as highly cytotoxic for LNCaP and LNCaP-KD cells, while Docetaxel (DOC) + GB1107 show greater efficacy in PC-3 cells. Overall, 2-PMPA and GB1107 demonstrate synergistic cytotoxic effects with ENZ and DOC in various CaP cell lines.

6.
J Pharm Sci ; 109(9): 2874-2883, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32534879

RESUMEN

In this work, a multifunctional hierarchical nanoformulation composed of biodegradable chitosan (CS) coated poly (lactic-co-glycolic acid) (PLGA) nanocarriers loaded with docetaxel (Doc) and interleukin-8 (IL-8) small interfering RNA (siRNA) electrostatically bound to upconversion nanoparticles (UCNPs), is developed to treat castration-resistant prostate cancer (CRPC). This theranostic nanoformulation facilitates simultaneous delivery of chemotherapy and gene therapy, as well as a bimodal optical and magnetic resonance imaging agent that could enable image-guided combination therapy. Poly-d-lysine coated NaYF4; Yb20%, Er2%@NaYF4; Gd50% core@shell UCNPs are effective siRNA transfection agents, and Er3+ doping provides upconversion imaging capabilities, while Gd3+ doping enables magnetic resonance contrast enhancement. These properties are maintained upon encapsulation in PLGA-CS. PLGA-CS nanocarriers containing Doc and UCNP-siRNA are 235 ± 5 nm with a zeta potential of +17 ± 4 meV, and have a high Doc encapsulation efficiency of 57 ± 6%. Compared to free Doc, this PLGA-CS nanoformulation containing Doc and UCNP-siRNA exhibits a dramatic decrease in IC50 of ~14,000 fold (p < 0.001) through combination therapy in human PC-3 prostate cancer cells. This biocompatible, multimodal, theranostic nanoformulation demonstrates paradigm-shifting enhancement in anticancer activity over free Doc, with unique potential for use in image-guided combination therapy to treat CRPC.


Asunto(s)
Nanopartículas , Neoplasias de la Próstata Resistentes a la Castración , Supervivencia Celular , Docetaxel , Humanos , Masculino , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Medicina de Precisión , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
7.
Colloids Surf B Biointerfaces ; 180: 289-297, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31071568

RESUMEN

A new strategy to encapsulating the drug curcumin into the hydrophobic core of the iron-phenanthroline nanocomplex (NIP) and eventually its release is signified. NIP was prepared via coordinate interaction between Fe2+ and the lone pairs present on the N atoms of the bidentate phenanthroline ligand (spherical morphology, diameter 18.8 nm, mesoporous with pore size 2.443 nm, amorphous). Thereafter, curcumin was successfully encapsulated (NCIP) in NIP, resulting in its enhanced stability (spherical morphology, diameter 46.8 nm). The nanocomplex NIP was used for drug delivery applications. We evaluated the anti-HIV effects of NCIP in vitro on cultures of HIV infected human microglia. The treatment of HIV-1 infected microglia with NCIP significantly decreased the expression of HIV-p24 by 41% and pro-inflammatory mediators TNF-α, IL-8 and NO by 61.2%, 41% and 50.2%, respectively, compared to NIP. Flow cytometry data also support the decrease in TNF-α and IL-8 expression in case of NCIP. NCIP induced antioxidative effects by increasing the gene expression of catalase (CAT) and simulatenously decreasing hemeoxygenase-1 (HMOX-1) gene expression, thereby maintaining homeostasis which reduces neuroinflammation. These results support our premise that NCIP may be a significant adjuvant when used with traditional anti-retroviral regimens and may ameliorate HIV-1 associated neurotoxicity.


Asunto(s)
Fármacos Anti-VIH/farmacología , Curcumina/farmacología , Composición de Medicamentos , Hierro/química , Nanopartículas/química , Fenantrolinas/química , Adsorción , Biomarcadores/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Microglía/citología , Microglía/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Porosidad , Temperatura
8.
J Drug Target ; 26(2): 182-193, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28697660

RESUMEN

It is well established that overproduction and accumulation of the ß-amyloid (Aß) peptide 1-42 (Aß(1-42)) is a trigger of the pathological cascade in Alzheimer's disease (AD) that manifests as cognitive impairment. Ginsenoside Rg3 is an important constituent of ginseng, plays an essential role in memory and improved cognition, and is known to produce antioxidant effects via the reduction of free radicals. Therefore, ginsenoside Rg3 may be a promising candidate as a neuroprotective agent for the treatment of AD. A novel nanotherapeutic strategy that enhances delivery of ginsenosides to the brain by increasing its transport across the blood brain barrier (BBB) would facilitate neuroprotection and limit the accumulation of Aß plaques and subsequent neurodegeneration. In this current study, we formulated and characterised biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that encapsulate ginsenoside Rg3 and Thioflavin T, an Aß diagnostic; examine its neuroprotective effects; investigate key mechanisms that may underlie its neuroprotective effects; and evaluate its ability to cross the BBB using an in vitro BBB model. Our PLGA-Rg3 NPs offers an exciting new theranostic material capable of encapsulating natural nutraceuticals for the detection and treatment of AD. In addition, this nanotechnology strategy can be adapted to treat other neurological diseases, utilising many natural therapeutic agents which are limited by their solubility and/or poor pharmacokinetics.


Asunto(s)
Ginsenósidos/química , Ginsenósidos/farmacología , Nanoestructuras/química , Fármacos Neuroprotectores/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Implantes Absorbibles , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Monocitos/efectos de los fármacos , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/química , Unión Proteica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA