Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(10): 732-748, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37438560

RESUMEN

The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.


Asunto(s)
Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis/fisiología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Caspasas/metabolismo
2.
Cell ; 173(5): 1217-1230.e17, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775594

RESUMEN

Intrinsic apoptosis, reliant on BAX and BAK, has been postulated to be fundamental for morphogenesis, but its precise contribution to this process has not been fully explored in mammals. Our structural analysis of BOK suggests close resemblance to BAX and BAK structures. Notably, Bok-/-Bax-/-Bak-/- animals exhibited more severe defects and died earlier than Bax-/-Bak-/- mice, implying that BOK has overlapping roles with BAX and BAK during developmental cell death. By analyzing Bok-/-Bax-/-Bak-/- triple-knockout mice whose cells are incapable of undergoing intrinsic apoptosis, we identified tissues that formed well without this process. We provide evidence that necroptosis, pyroptosis, or autophagy does not substantially substitute for the loss of apoptosis. Albeit very rare, unexpected attainment of adult Bok-/-Bax-/-Bak-/- mice suggests that morphogenesis can proceed entirely without apoptosis mediated by these proteins and possibly without cell death in general.


Asunto(s)
Apoptosis , Embrión de Mamíferos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética , Anomalías Múltiples/patología , Anomalías Múltiples/veterinaria , Animales , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/patología , Desarrollo Embrionario/genética , Feto/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
3.
Mol Cell ; 81(10): 2123-2134.e5, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33794146

RESUMEN

A body of data supports the existence of core (α2-α5) dimers of BAK and BAX in the oligomeric, membrane-perturbing conformation of these essential apoptotic effector molecules. Molecular structures for these dimers have only been captured for truncated constructs encompassing the core domain alone. Here, we report a crystal structure of BAK α2-α8 dimers (i.e., minus its flexible N-terminal helix and membrane-anchoring C-terminal segment) that has been obtained through the activation of monomeric BAK with the detergent C12E8. Core dimers are evident, linked through the crystal by contacts via latch (α6-α8) domains. This crystal structure shows activated BAK dimers with the extended latch domain present. Our data provide direct evidence for the conformational change converting BAK from inert monomer to the functional dimer that destroys mitochondrial integrity. This dimer is the smallest functional unit for recombinant BAK or BAX described so far.


Asunto(s)
Detergentes/química , Multimerización de Proteína , Proteína Destructora del Antagonista Homólogo bcl-2/química , Secuencia de Aminoácidos , Animales , Liposomas , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Estructura Secundaria de Proteína , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
4.
Cell ; 152(3): 519-31, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374347

RESUMEN

In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other's surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis.


Asunto(s)
Apoptosis , Cristalografía por Rayos X , Proteína X Asociada a bcl-2/química , Secuencia de Aminoácidos , Animales , Citocromos c/metabolismo , Dimerización , Embrión de Mamíferos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/metabolismo , Hígado/metabolismo , Ratones , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteína X Asociada a bcl-2/metabolismo
5.
PLoS Biol ; 22(5): e3002617, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696533

RESUMEN

BAK and BAX execute intrinsic apoptosis by permeabilising the mitochondrial outer membrane. Their activity is regulated through interactions with pro-survival BCL-2 family proteins and with non-BCL-2 proteins including the mitochondrial channel protein VDAC2. VDAC2 is important for bringing both BAK and BAX to mitochondria where they execute their apoptotic function. Despite this important function in apoptosis, while interactions with pro-survival family members are well characterised and have culminated in the development of drugs that target these interfaces to induce cancer cell apoptosis, the interaction between BAK and VDAC2 remains largely undefined. Deep scanning mutagenesis coupled with cysteine linkage identified key residues in the interaction between BAK and VDAC2. Obstructive labelling of specific residues in the BH3 domain or hydrophobic groove of BAK disrupted this interaction. Conversely, mutating specific residues in a cytosol-exposed region of VDAC2 stabilised the interaction with BAK and inhibited BAK apoptotic activity. Thus, this VDAC2-BAK interaction site can potentially be targeted to either inhibit BAK-mediated apoptosis in scenarios where excessive apoptosis contributes to disease or to promote BAK-mediated apoptosis for cancer therapy.


Asunto(s)
Apoptosis , Canal Aniónico 2 Dependiente del Voltaje , Proteína Destructora del Antagonista Homólogo bcl-2 , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Humanos , Unión Proteica , Mitocondrias/metabolismo , Animales , Células HEK293
6.
Nat Rev Mol Cell Biol ; 15(1): 49-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24355989

RESUMEN

The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.


Asunto(s)
Apoptosis , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/química , Transducción de Señal
7.
EMBO J ; 40(20): e107237, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34523147

RESUMEN

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.


Asunto(s)
Liposomas/química , Lípidos de la Membrana/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Animales , Sitios de Unión , Clonación Molecular , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
8.
Nature ; 565(7737): 118-121, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542156

RESUMEN

Plasmodium falciparum causes the severe form of malaria that has high levels of mortality in humans. Blood-stage merozoites of P. falciparum invade erythrocytes, and this requires interactions between multiple ligands from the parasite and receptors in hosts. These interactions include the binding of the Rh5-CyRPA-Ripr complex with the erythrocyte receptor basigin1,2, which is an essential step for entry into human erythrocytes. Here we show that the Rh5-CyRPA-Ripr complex binds the erythrocyte cell line JK-1 significantly better than does Rh5 alone, and that this binding occurs through the insertion of Rh5 and Ripr into host membranes as a complex with high molecular weight. We report a cryo-electron microscopy structure of the Rh5-CyRPA-Ripr complex at subnanometre resolution, which reveals the organization of this essential invasion complex and the mode of interactions between members of the complex, and shows that CyRPA is a critical mediator of complex assembly. Our structure identifies blades 4-6 of the ß-propeller of CyRPA as contact sites for Rh5 and Ripr. The limited contacts between Rh5-CyRPA and CyRPA-Ripr are consistent with the dissociation of Rh5 and Ripr from CyRPA for membrane insertion. A comparision of the crystal structure of Rh5-basigin with the cryo-electron microscopy structure of Rh5-CyRPA-Ripr suggests that Rh5 and Ripr are positioned parallel to the erythrocyte membrane before membrane insertion. This provides information on the function of this complex, and thereby provides insights into invasion by P. falciparum.


Asunto(s)
Antígenos de Protozoos/ultraestructura , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Plasmodium falciparum , Proteínas Protozoarias/ultraestructura , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Drosophila , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitología , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
9.
Mol Cell ; 68(4): 659-672.e9, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149594

RESUMEN

Certain BH3-only proteins transiently bind and activate Bak and Bax, initiating their oligomerization and the permeabilization of the mitochondrial outer membrane, a pivotal step in the mitochondrial pathway to apoptosis. Here we describe the first crystal structures of an activator BH3 peptide bound to Bak and illustrate their use in the design of BH3 derivatives capable of inhibiting human Bak on mitochondria. These BH3 derivatives compete for the activation site at the canonical groove, are the first engineered inhibitors of Bak activation, and support the role of key conformational transitions associated with Bak activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2 , Mitocondrias , Péptidos , Proteína Destructora del Antagonista Homólogo bcl-2 , Animales , Proteína 11 Similar a Bcl2/química , Proteína 11 Similar a Bcl2/farmacología , Línea Celular Transformada , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Péptidos/química , Péptidos/farmacología , Unión Proteica , Relación Estructura-Actividad , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
10.
EMBO J ; 39(18): e106275, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32845033

RESUMEN

The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Animales , Sitios de Unión , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Cristalografía por Rayos X , Citocinas/genética , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos , Polarización de Fluorescencia , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Inhibidores de Proteasas/farmacología , Conformación Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Ubiquitinas/genética , Células Vero
11.
Genes Dev ; 30(10): 1240-50, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27198225

RESUMEN

Due to the myriad interactions between prosurvival and proapoptotic members of the Bcl-2 family of proteins, establishing the mechanisms that regulate the intrinsic apoptotic pathway has proven challenging. Mechanistic insights have primarily been gleaned from in vitro studies because genetic approaches in mammals that produce unambiguous data are difficult to design. Here we describe a mutation in mouse and human Bak that specifically disrupts its interaction with the prosurvival protein Bcl-xL Substitution of Glu75 in mBak (hBAK Q77) for leucine does not affect the three-dimensional structure of Bak or killing activity but reduces its affinity for Bcl-xL via loss of a single hydrogen bond. Using this mutant, we investigated the requirement for physical restraint of Bak by Bcl-xL in apoptotic regulation. In vitro, Bak(Q75L) cells were significantly more sensitive to various apoptotic stimuli. In vivo, loss of Bcl-xL binding to Bak led to significant defects in T-cell and blood platelet survival. Thus, we provide the first definitive in vivo evidence that prosurvival proteins maintain cellular viability by interacting with and inhibiting Bak.


Asunto(s)
Apoptosis/genética , Plaquetas/citología , Linfocitos T/citología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Línea Celular , Supervivencia Celular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética
12.
Trends Biochem Sci ; 44(1): 53-63, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30509860

RESUMEN

The recent implication of the cell death pathway, necroptosis, in innate immunity and a range of human pathologies has led to intense interest in the underlying molecular mechanism. Unlike the better-understood apoptosis pathway, necroptosis is a caspase-independent pathway that leads to cell lysis and release of immunogens downstream of death receptor and Toll-like receptor (TLR) ligation. Here we review the role of recent structural studies of the core machinery of the pathway, the protein kinases receptor-interacting protein kinase (RIPK)1 and RIPK3, and the terminal effector, the pseudokinase mixed lineage kinase domain-like protein (MLKL), in shaping our mechanistic understanding of necroptotic signaling. Structural studies have played a key role in establishing models that describe MLKL's transition from a dormant monomer to a killer oligomer and revealing important interspecies differences.


Asunto(s)
Muerte Celular , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Humanos , Conformación Proteica , Proteínas Quinasas/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química
13.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30573668

RESUMEN

The E3 ubiquitin ligase Parkin is a key effector of the removal of damaged mitochondria by mitophagy. Parkin determines cell fate in response to mitochondrial damage, with its loss promoting early onset Parkinson's disease and potentially also cancer progression. Controlling a cell's apoptotic response is essential to co-ordinate the removal of damaged mitochondria. We report that following mitochondrial damage-induced mitophagy, Parkin directly ubiquitinates the apoptotic effector protein BAK at a conserved lysine in its hydrophobic groove, a region that is crucial for BAK activation by BH3-only proteins and its homo-dimerisation during apoptosis. Ubiquitination inhibited BAK activity by impairing its activation and the formation of lethal BAK oligomers. Parkin also suppresses BAX-mediated apoptosis, but in the absence of BAX ubiquitination suggesting an indirect mechanism. In addition, we find that BAK-dependent mitochondrial outer membrane permeabilisation during apoptosis promotes PINK1-dependent Parkin activation. Hence, we propose that Parkin directly inhibits BAK to suppress errant apoptosis, thereby allowing the effective clearance of damaged mitochondria, but also promotes clearance of apoptotic mitochondria to limit their potential pro-inflammatory effect.


Asunto(s)
Mitocondrias/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Apoptosis , Línea Celular , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Ratones , Mitofagia , Ubiquitinación , Proteína Destructora del Antagonista Homólogo bcl-2/química
14.
Nat Chem Biol ; 17(4): 428-437, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542533

RESUMEN

Tryptophan C-mannosylation is an unusual co-translational protein modification performed by metazoans and apicomplexan protists. The prevalence and biological functions of this modification are poorly understood, with progress in the field hampered by a dearth of convenient tools for installing and detecting the modification. Here, we engineer a yeast system to produce a diverse array of proteins with and without tryptophan C-mannosylation and interrogate the modification's influence on protein stability and function. This system also enabled mutagenesis studies to identify residues of the glycosyltransferase and its protein substrates that are crucial for catalysis. The collection of modified proteins accrued during this work facilitated the generation and thorough characterization of monoclonal antibodies against tryptophan C-mannosylation. These antibodies empowered proteomic analyses of the brain C-glycome by enriching for peptides possessing tryptophan C-mannosylation. This study revealed many new modification sites on proteins throughout the secretory pathway with both conventional and non-canonical consensus sequences.


Asunto(s)
Manosa/química , Ingeniería de Proteínas/métodos , Triptófano/metabolismo , Secuencia de Aminoácidos/genética , Anticuerpos/inmunología , Glicosilación , Glicosiltransferasas/metabolismo , Manosa/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estabilidad Proteica , Proteómica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Triptófano/química
15.
Proc Natl Acad Sci U S A ; 117(15): 8468-8475, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32234780

RESUMEN

The necroptosis cell death pathway has been implicated in host defense and in the pathology of inflammatory diseases. While phosphorylation of the necroptotic effector pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) by the upstream protein kinase RIPK3 is a hallmark of pathway activation, the precise checkpoints in necroptosis signaling are still unclear. Here we have developed monobodies, synthetic binding proteins, that bind the N-terminal four-helix bundle (4HB) "killer" domain and neighboring first brace helix of human MLKL with nanomolar affinity. When expressed as genetically encoded reagents in cells, these monobodies potently block necroptotic cell death. However, they did not prevent MLKL recruitment to the "necrosome" and phosphorylation by RIPK3, nor the assembly of MLKL into oligomers, but did block MLKL translocation to membranes where activated MLKL normally disrupts membranes to kill cells. An X-ray crystal structure revealed a monobody-binding site centered on the α4 helix of the MLKL 4HB domain, which mutational analyses showed was crucial for reconstitution of necroptosis signaling. These data implicate the α4 helix of its 4HB domain as a crucial site for recruitment of adaptor proteins that mediate membrane translocation, distinct from known phospholipid binding sites.


Asunto(s)
Materiales Biomiméticos/farmacología , Membrana Celular/metabolismo , Dominio de Fibronectina del Tipo III , Necrosis , Oligopéptidos/farmacología , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Cristalografía por Rayos X , Humanos , Fosforilación , Conformación Proteica , Proteínas Quinasas/química , Multimerización de Proteína , Transporte de Proteínas
16.
Biophys J ; 121(3): 347-360, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973947

RESUMEN

Apoptosis, the intrinsic programmed cell death process, is mediated by the Bcl-2 family members Bak and Bax. Activation via formation of symmetric core dimers and oligomerization on the mitochondrial outer membrane (MOM) leads to permeabilization and cell death. Although this process is linked to the MOM, the role of the membrane in facilitating such pores is poorly understood. We recently described Bak core domain dimers, revealing lipid binding sites and an initial role of lipids in oligomerization. Here we describe simulations that identified localized clustering and interaction of triacylglycerides (TAGs) with a minimized Bak dimer construct. Coalescence of TAGs occurred beneath this Bak dimer, mitigating dimer-induced local membrane thinning and curvature in representative coarse-grain MOM and model membrane systems. Furthermore, the effects observed as a result of coarse-grain TAG cluster formation was concentration dependent, scaling from low physiological MOM concentrations to those found in other organelles. We find that increasing the TAG concentration in liposomes mimicking the MOM decreased the ability of activated Bak to permeabilize these liposomes. These results suggest that the presence of TAGs within a Bak-lipid membrane preserves membrane integrity and is associated with reduced membrane stress, suggesting a possible role of TAGs in Bak-mediated apoptosis.


Asunto(s)
Liposomas , Proteína Destructora del Antagonista Homólogo bcl-2 , Apoptosis , Lípidos , Liposomas/metabolismo , Membranas Mitocondriales/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/análisis , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
17.
Immunity ; 39(3): 443-53, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-24012422

RESUMEN

Mixed lineage kinase domain-like (MLKL) is a component of the "necrosome," the multiprotein complex that triggers tumor necrosis factor (TNF)-induced cell death by necroptosis. To define the specific role and molecular mechanism of MLKL action, we generated MLKL-deficient mice and solved the crystal structure of MLKL. Although MLKL-deficient mice were viable and displayed no hematopoietic anomalies or other obvious pathology, cells derived from these animals were resistant to TNF-induced necroptosis unless MLKL expression was restored. Structurally, MLKL comprises a four-helical bundle tethered to the pseudokinase domain, which contains an unusual pseudoactive site. Although the pseudokinase domain binds ATP, it is catalytically inactive and its essential nonenzymatic role in necroptotic signaling is induced by receptor-interacting serine-threonine kinase 3 (RIPK3)-mediated phosphorylation. Structure-guided mutation of the MLKL pseudoactive site resulted in constitutive, RIPK3-independent necroptosis, demonstrating that modification of MLKL is essential for propagation of the necroptosis pathway downstream of RIPK3.


Asunto(s)
Apoptosis , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Fosfoproteínas Fosfatasas , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Transducción de Señal
18.
Mol Cell ; 55(6): 938-946, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25175025

RESUMEN

Apoptotic stimuli activate and oligomerize the proapoptotic proteins Bak and Bax, resulting in mitochondrial outer-membrane permeabilization and subsequent cell death. This activation can occur when certain BH3-only proteins interact directly with Bak and Bax. Recently published crystal structures reveal that Bax separates into core and latch domains in response to BH3 peptides. The distinguishing characteristics of BH3 peptides capable of directly activating Bax were also elucidated. Here we identify specific BH3 peptides capable of "unlatching" Bak and describe structural insights into Bak activation and oligomerization. Crystal structures and crosslinking experiments demonstrate that Bak undergoes a conformational change similar to that of Bax upon activation. A structure of the Bak core domain dimer provides a high-resolution image of this key intermediate in the pore-forming oligomer. Our results confirm an analogous mechanism for activation and dimerization of Bak and Bax in response to certain BH3 peptides.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/química , Animales , Cristalografía , Cisteína/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteína X Asociada a bcl-2/metabolismo
19.
Biochem Soc Trans ; 49(6): 2787-2795, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34913469

RESUMEN

The BCL-2 protein family govern whether a cell dies or survives by controlling mitochondrial apoptosis. As dysregulation of mitochondrial apoptosis is a common feature of cancer cells, targeting protein-protein interactions within the BCL-2 protein family is a key strategy to seize control of apoptosis and provide favourable outcomes for cancer patients. Non-BCL-2 family proteins are emerging as novel regulators of apoptosis and are potential drug targets. Voltage dependent anion channel 2 (VDAC2) can regulate apoptosis. However, it is unclear how this occurs at the molecular level, with conflicting evidence in the literature for its role in regulating the BCL-2 effector proteins, BAK and BAX. Notably, VDAC2 is required for efficient BAX-mediated apoptosis, but conversely inhibits BAK-mediated apoptosis. This review focuses on the role of VDAC2 in apoptosis, discussing the current knowledge of the interaction between VDAC2 and BCL-2 family proteins and the recent development of an apoptosis inhibitor that targets the VDAC2-BAK interaction.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Canal Aniónico 2 Dependiente del Voltaje/fisiología , Animales , Apoptosis/fisiología , Humanos , Neoplasias/patología
20.
Nat Chem Biol ; 15(11): 1057-1066, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31591564

RESUMEN

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.


Asunto(s)
Apoptosis/fisiología , Bibliotecas de Moléculas Pequeñas/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/fisiología , Proteína Destructora del Antagonista Homólogo bcl-2/fisiología , Animales , Ratones , Unión Proteica , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA