Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Med ; 21(5): e1004408, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758967

RESUMEN

BACKGROUND: Preclinical studies have demonstrated that tumour cell death can be enhanced 10- to 40-fold when radiotherapy is combined with focussed ultrasound-stimulated microbubble (FUS-MB) treatment. The acoustic exposure of microbubbles (intravascular gas microspheres) within the target volume causes bubble cavitation, which induces perturbation of tumour vasculature and activates endothelial cell apoptotic pathways responsible for the ablative effect of stereotactic body radiotherapy. Subsequent irradiation of a microbubble-sensitised tumour causes rapid increased tumour death. The study here presents the mature safety and efficacy outcomes of magnetic resonance (MR)-guided FUS-MB (MRgFUS-MB) treatment, a radioenhancement therapy for breast cancer. METHODS AND FINDINGS: This prospective, single-center, single-arm Phase 1 clinical trial included patients with stages I-IV breast cancer with in situ tumours for whom breast or chest wall radiotherapy was deemed adequate by a multidisciplinary team (clinicaltrials.gov identifier: NCT04431674). Patients were excluded if they had contraindications for contrast-enhanced MR or microbubble administration. Patients underwent 2 to 3 MRgFUS-MB treatments throughout radiotherapy. An MR-coupled focussed ultrasound device operating at 800 kHz and 570 kPa peak negative pressure was used to sonicate intravenously administrated microbubbles within the MR-guided target volume. The primary outcome was acute toxicity per Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Secondary outcomes were tumour response at 3 months and local control (LC). A total of 21 female patients presenting with 23 primary breast tumours were enrolled and allocated to intervention between August/2020 and November/2022. Three patients subsequently withdrew consent and, therefore, 18 patients with 20 tumours were included in the safety and LC analyses. Two patients died due to progressive metastatic disease before 3 months following treatment completion and were excluded from the tumour response analysis. The prescribed radiation doses were 20 Gy/5 fractions (40%, n = 8/20), 30 to 35 Gy/5 fractions (35%, n = 7/20), 30 to 40 Gy/10 fractions (15%, n = 3/20), and 66 Gy/33 fractions (10%, n = 2/20). The median follow-up was 9 months (range, 0.3 to 29). Radiation dermatitis was the most common acute toxicity (Grade 1 in 16/20, Grade 2 in 1/20, and Grade 3 in 2/20). One patient developed grade 1 allergic reaction possibly related to microbubbles administration. At 3 months, 18 tumours were evaluated for response: 9 exhibited complete response (50%, n = 9/18), 6 partial response (33%, n = 6/18), 2 stable disease (11%, n = 2/18), and 1 progressive disease (6%, n = 1/18). Further follow-up of responses indicated that the 6-, 12-, and 24-month LC rates were 94% (95% confidence interval [CI] [84%, 100%]), 88% (95% CI [75%, 100%]), and 76% (95% CI [54%, 100%]), respectively. The study's limitations include variable tumour sizes and dose fractionation regimens and the anticipated small sample size typical for a Phase 1 clinical trial. CONCLUSIONS: MRgFUS-MB is an innovative radioenhancement therapy associated with a safe profile, potentially promising responses, and durable LC. These results warrant validation in Phase 2 clinical trials. TRIAL REGISTRATION: clinicaltrials.gov, identifier NCT04431674.


Asunto(s)
Neoplasias de la Mama , Microburbujas , Humanos , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Microburbujas/uso terapéutico , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Adulto , Resultado del Tratamiento , Imagen por Resonancia Magnética , Anciano de 80 o más Años
2.
J Ultrasound Med ; 43(1): 137-150, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37873733

RESUMEN

OBJECTIVES: Quantitative ultrasound (QUS) is a noninvasive imaging technique that can be used for assessing response to anticancer treatment. In the present study, tumor cell death response to the ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment was monitored in vivo using QUS. METHODS: Human breast cancer cell lines (MDA-MB-231) were grown in mice and were treated with HT (10, 30, 50, and 60 minutes) alone, or in combination with USMB. Treatment effects were examined using QUS with a center frequency of 25 MHz (bandwidth range: 16 to 32 MHz). Backscattered radiofrequency (RF) data were acquired from tumors subjected to treatment. Ultrasound parameters such as average acoustic concentration (AAC) and average scatterer diameter (ASD), were estimated 24 hours prior and posttreatment. Additionally, texture features: contrast (CON), correlation (COR), energy (ENE), and homogeneity (HOM) were extracted from QUS parametric maps. All estimated parameters were compared with histopathological findings. RESULTS: The findings of our study demonstrated a significant increase in QUS parameters in both treatment conditions: HT alone (starting from 30 minutes of heat exposure) and combined treatment of HT plus USMB finally reaching a maximum at 50 minutes of heat exposure. Increase in AAC for 50 minutes HT alone and USMB +50 minutes was found to be 5.19 ± 0.417% and 5.91 ± 1.11%, respectively, compared to the control group with AAC value of 1.00 ± 0.44%. Furthermore, between the treatment groups, ΔASD-ENE values for USMB +30 minutes HT significantly reduced, depicting 0.00062 ± 0.00096% compared to 30 minutes HT only group, showing 0.0058 ± 0.0013%. Further, results obtained from the histological analysis indicated greater cell death and reduced nucleus size in both HT alone and HT combined with USMB. CONCLUSION: The texture-based QUS parameters indicated a correlation with microstructural changes obtained from histological data. This work demonstrated the use of QUS to detect HT treatment effects in breast cancer tumors in vivo.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Neoplasias Mamarias Animales , Humanos , Animales , Ratones , Femenino , Microburbujas , Ultrasonografía/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Terapia Combinada
3.
Ultrason Imaging ; 46(2): 75-89, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38318705

RESUMEN

Quantitative ultrasound (QUS) is an imaging technique which includes spectral-based parameterization. Typical spectral-based parameters include the backscatter coefficient (BSC) and attenuation coefficient slope (ACS). Traditionally, spectral-based QUS relies on the radio frequency (RF) signal to calculate the spectral-based parameters. Many clinical and research scanners only provide the in-phase and quadrature (IQ) signal. To acquire the RF data, the common approach is to convert IQ signal back into RF signal via mixing with a carrier frequency. In this study, we hypothesize that the performance, that is, accuracy and precision, of spectral-based parameters calculated directly from IQ data is as good as or better than using converted RF data. To test this hypothesis, estimation of the BSC and ACS using RF and IQ data from software, physical phantoms and in vivo rabbit data were analyzed and compared. The results indicated that there were only small differences in estimates of the BSC between when using the original RF, the IQ derived from the original RF and the RF reconverted from the IQ, that is, root mean square errors (RMSEs) were less than 0.04. Furthermore, the structural similarity index measure (SSIM) was calculated for ACS maps with a value greater than 0.96 for maps created using the original RF, IQ data and reconverted RF. On the other hand, the processing time using the IQ data compared to RF data were substantially less, that is, reduced by more than a factor of two. Therefore, this study confirms two things: (1) there is no need to convert IQ data back to RF data for conducting spectral-based QUS analysis, because the conversion from IQ back into RF data can introduce artifacts. (2) For the implementation of real-time QUS, there is an advantage to convert the original RF data into IQ data to conduct spectral-based QUS analysis because IQ data-based QUS can improve processing speed.


Asunto(s)
Ultrasonografía , Animales , Conejos , Ultrasonografía/métodos , Fantasmas de Imagen
4.
BMC Cancer ; 23(1): 693, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488490

RESUMEN

BACKGROUND: Radiation therapy (XRT) causes numerous biological changes in tumor microenvironment. Radiation vascular response, due to endothelial disruption, can influence treatment outcomes in a dose-dependent manner. Ultrasound-stimulated microbubbles (USMB) have also been demonstrated to create a vascular response in the tumor microenvironment and enhance tumor response when used in combination with XRT. Single doses of 8-10 Gy are known to induce activation of acid sphingomyelinase (ASMase)-induced ceramide production, causing vascular damage. Destruction of vasculature results in endothelial apoptosis followed by tumor cell death. The effect of tumor response is known to be synergistic by 10-fold higher cell kill observed when USMB is combined with radiation. METHODS: In this study, we used an USMB approach in combination with conventional low dose fractionated radiation to enhance endothelial cell responses to XRT in human PC3 prostate cancer xenograft model. Mice were divided into untreated, USMB therapy, fractionated XRT, and combined USMB therapy followed by XRT (USMB + XRT) groups. USMB therapy was delivered twice per week in the USMB-alone and combined USMB + XRT treatment groups over four weeks. Radiation treatments were delivered in fractions of 2 Gy/day (total 40 Gy in 20 fractions, BED10 = 48 Gy) in the XRT-alone and combined USMB + XRT groups. The treatment outcome was evaluated using histopathology, power Doppler, and immunohistochemistry assays. RESULTS: Tumor growth assessment showed that sizes of tumors increased in the control and the single treatment groups over a treatment period of four weeks, but significantly decreased with the combined treatments of USMB + XRT. Immunohistochemical analysis indicated a statistically significant vascular disruption in mice that received treatment involving a full 4-week schedule of combined (USMB + XRT) treatments. A statistically significant increase in vascular disruption was demonstrated through CD68 and trichrome fibrosis staining. Changes in local perfusion assessed using high-frequency power Doppler imaging demonstrated attenuated blood flow in the combined group. DISCUSSION AND CONCLUSIONS: This work demonstrates the efficacy of using USMB as a radiation sensitizer in a mouse model of human PC3 tumor xenograft. This radiation treatment enhancement modality has the advantage of targeting tumor vasculature with ultrasound stimulation that can be implemented prior to radiation treatment.


Asunto(s)
Microburbujas , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Ultrasonografía , Terapia Combinada , Apoptosis , Modelos Animales de Enfermedad , Microambiente Tumoral
5.
Prostate ; 82(6): 695-705, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167141

RESUMEN

BACKGROUND: Prostate cancer (PCa) models in mice and rats are limited by their size and lack of a clearly delineated or easily accessible prostate gland. The canine PCa model is currently the only large animal model which can be used to test new preclinical interventions but is costly and availability is sparse. As an alternative, we developed an orthotopic human prostate tumor model in an immunosuppressed New Zealand White rabbit. Rabbits are phylogenetically closer to humans, their prostate gland is anatomically similar, and its size allows for clinically-relevant testing of interventions. METHODS: Rabbits were immunosuppressed via injection of cyclosporine. Human PC3pipGFP PCa cells were injected into the prostate via either (a) laparotomy or (b) transabdominal ultrasound (US) guided injection. Tumor growth was monitored using US and magnetic resonance imaging (MRI). Contrast-enhanced ultrasound (CEUS) imaging using nanobubbles and Lumason microbubbles was also performed to examine imaging features and determine the optimal contrast dose required for enhanced visualization of the tumor. Ex vivo fluorescence imaging, histopathology, and immunohistochemistry analyses of the collected tissues were performed to validate tumor morphology and prostate-specific membrane antigen (PSMA) expression. RESULTS: Immunosuppression and tumor growth were, in general, well-tolerated by the rabbits. Fourteen out of 20 rabbits, with an average age of 8 months, successfully grew detectable tumors from Day 14 onwards after cell injection. The tumor growth rate was 39 ± 25 mm2 per week. CEUS and MRI of tumors appear hypoechoic and T2 hypointense, respectively, relative to normal prostate tissue. Minimally invasive US-guided tumor cell injection proved to be a better method compared to laparotomy due to the shorter recovery time required for the rabbits following injection. Among the rabbits that grew tumors, seven had tumors both inside and outside the prostate, three had tumors only inside the prostate, and four had tumors exclusively outside of the prostate. All tumors expressed the PSMA receptor. CONCLUSIONS: We have established, for the first time, an orthotopic PCa rabbit model via percutaneous US-guided tumor cell inoculation. This animal model is an attractive, clinically relevant intermediate step to assess preclinical diagnostic and therapeutic compounds.


Asunto(s)
Neoplasias de la Próstata , Animales , Castración , Modelos Animales de Enfermedad , Perros , Humanos , Masculino , Ratones , Microburbujas , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Conejos , Ratas , Ultrasonografía/métodos
6.
J Neurooncol ; 156(3): 579-588, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34981301

RESUMEN

BACKGROUND: Quantitative image analysis using pre-operative magnetic resonance imaging (MRI) has been able to predict survival in patients with glioblastoma (GBM). The study explored the role of postoperative radiation (RT) planning MRI-based radiomics to predict the outcomes, with features extracted from the gross tumor volume (GTV) and clinical target volume (CTV). METHODS: Patients with IDH-wildtype GBM treated with adjuvant RT having MRI as a part of RT planning process were included in the study. 546 features were extracted from each GTV and CTV. A LASSO Cox model was applied, and internal validation was performed using leave-one-out cross-validation with overall survival as endpoint. Cross-validated time-dependent area under curve (AUC) was constructed to test the efficacy of the radiomics model, and clinical features were used to generate a combined model. Analysis was done for the entire group and in individual surgical groups-gross total excision (GTR), subtotal resection (STR), and biopsy. RESULTS: 235 patients were included in the study with 57, 118, and 60 in the GTR, STR, and biopsy subgroup, respectively. Using the radiomics model, binary risk groups were feasible in the entire cohort (p < 0.01) and biopsy group (p = 0.04), but not in the other two surgical groups individually. The integrated AUC (iAUC) was 0.613 for radiomics-based classification in the biopsy subgroup, which improved to 0.632 with the inclusion of clinical features. CONCLUSION: Imaging features extracted from the GTV and CTV regions can lead to risk-stratification of GBM undergoing biopsy, while the utility in other individual subgroups needs to be further explored.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Humanos , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas , Radioterapia Adyuvante , Análisis de Supervivencia
7.
J Ultrasound Med ; 41(11): 2659-2671, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35142383

RESUMEN

OBJECTIVE: The objective of the present study was to investigate the treatment effects of ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) on breast tumor vasculature. METHODS: Tumor-bearing mice with breast cancer xenografts (MDA-MB-231), were exposed to different treatment conditions consisting of control (no treatment), USMB alone, HT alone, USMB with HT exposures of 10 and 50 minutes. Quantitative 3D Doppler ultrasound and photoacoustic imaging were used to detect tumor blood flow and oxygen saturation, respectively. In addition, histopathological analysis including TUNEL staining for cell death, and CD31 staining for the vessel count, was performed to complement the results of power Doppler and photoacoustic imaging. RESULTS: Results demonstrated a decrease in tumor blood flow as well as oxygenation level following 50 minutes HT treatment either alone or combined with USMB. In contrast, 10 minutes HT alone or combined with USMB had minimal effects on blood flow and tumor oxygenation level. Treatment with HT for 50 minutes caused drops in tumor oxygenation, which were not evident with USMB treatment alone. Additionally, results revealed an increase in cell death after 10 minutes HT with or without USMB and a decrease in vessel count compared to control. Unlike previous studies which demonstrated synergistic treatment effects combining USMB with other modalities such as radiation or chemotherapy, USMB and HT effects were not synergistic in the present study. CONCLUSION: The results here demonstrated HT and USMB both alone or together resulted in a significant reduction in tumor blood flow, tumor oxygenation, and vessel count with observed increases in cell death response.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Ratones , Animales , Femenino , Microburbujas , Xenoinjertos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Ultrasonografía , Línea Celular Tumoral
8.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743121

RESUMEN

Sphingolipids are well-recognized critical components in several biological processes. Ceramides constitute a class of sphingolipid metabolites that are involved in important signal transduction pathways that play key roles in determining the fate of cells to survive or die. Ceramide accumulated in cells causes apoptosis; however, ceramide metabolized to sphingosine promotes cell survival and angiogenesis. Studies suggest that vascular-targeted therapies increase endothelial cell ceramide resulting in apoptosis that leads to tumour cure. Specifically, ultrasound-stimulated microbubbles (USMB) used as vascular disrupting agents can perturb endothelial cells, eliciting acid sphingomyelinase (ASMase) activation accompanied by ceramide release. This phenomenon results in endothelial cell death and vascular collapse and is synergistic with other antitumour treatments such as radiation. In contrast, blocking the generation of ceramide using multiple approaches, including the conversion of ceramide to sphingosine-1-phosphate (S1P), abrogates this process. The ceramide-based cell survival "rheostat" between these opposing signalling metabolites is essential in the mechanotransductive vascular targeting following USMB treatment. In this review, we aim to summarize the past and latest findings on ceramide-based vascular-targeted strategies, including novel mechanotransductive methodologies.


Asunto(s)
Células Endoteliales , Neoplasias Inducidas por Radiación , Ceramidas/metabolismo , Células Endoteliales/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo , Esfingosina/metabolismo
9.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457210

RESUMEN

At present, cancer is one of the leading causes of death worldwide. Treatment failure remains one of the prime hurdles in cancer treatment due to the metastatic nature of cancer. Techniques have been developed to hinder the growth of tumours or at least to stop the metastasis process. In recent years, ultrasound therapy combined with microbubbles has gained immense success in cancer treatment. Ultrasound-stimulated microbubbles (USMB) combined with other cancer treatments including radiation therapy, chemotherapy or immunotherapy has demonstrated potential improved outcomes in various in vitro and in vivo studies. Studies have shown that low dose radiation administered with USMB can have similar effects as high dose radiation therapy. In addition, the use of USMB in conjunction with radiotherapy or chemotherapy can minimize the toxicity of high dose radiation or chemotherapeutic drugs, respectively. In this review, we discuss the biophysical properties of USMB treatment and its applicability in cancer therapy. In particular, we highlight important preclinical and early clinical findings that demonstrate the antitumour effect combining USMB and other cancer treatment modalities (radiotherapy and chemotherapy). Our review mainly focuses on the tumour vascular effects mediated by USMB and these cancer therapies. We also discuss several current limitations, in addition to ongoing and future efforts for applying USMB in cancer treatment.


Asunto(s)
Neoplasias , Terapia por Ultrasonido , Línea Celular Tumoral , Terapia Combinada , Microburbujas , Neoplasias/terapia , Terapia por Ultrasonido/métodos , Ultrasonografía
10.
BMC Cancer ; 21(1): 991, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479484

RESUMEN

BACKGROUND: The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. RESULTS: The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. CONCLUSION: Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


Asunto(s)
Hipertermia Inducida/métodos , Neoplasias de la Próstata/terapia , Ultrasonido/métodos , Animales , Apoptosis , Proliferación Celular , Terapia Combinada , Humanos , Masculino , Ratones , Ratones SCID , Microburbujas , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Neurooncol ; 155(2): 181-191, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34694564

RESUMEN

BACKGROUND: The peritumoral region (PTR) of glioblastoma (GBM) appears as a T2W-hyperintensity and is composed of microscopic tumor and edema. Infiltrative low grade glioma (LGG) comprises tumor cells that seem similar to GBM PTR on MRI. The work here explored if a radiomics-based approach can distinguish between the two groups (tumor and edema versus tumor alone). METHODS: Patients with GBM and LGG imaged using a 1.5 T MRI were included in the study. Image data from cases of GBM PTR, and LGG were manually segmented guided by T2W hyperintensity. A set of 91 first-order and texture features were determined from each of T1W-contrast, and T2W-FLAIR, diffusion-weighted imaging sequences. Applying filtration techniques, a total of 3822 features were obtained. Different feature reduction techniques were employed, and a subsequent model was constructed using four machine learning classifiers. Leave-one-out cross-validation was used to assess classifier performance. RESULTS: The analysis included 42 GBM and 36 LGG. The best performance was obtained using AdaBoost classifier using all the features with a sensitivity, specificity, accuracy, and area of curve (AUC) of 91%, 86%, 89%, and 0.96, respectively. Amongst the feature selection techniques, the recursive feature elimination technique had the best results, with an AUC ranging from 0.87 to 0.92. Evaluation with the F-test resulted in the most consistent feature selection with 3 T1W-contrast texture features chosen in over 90% of instances. CONCLUSIONS: Quantitative analysis of conventional MRI sequences can effectively demarcate GBM PTR from LGG, which is otherwise indistinguishable on visual estimation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Imagen por Resonancia Magnética , Neoplasias Encefálicas/diagnóstico por imagen , Diagnóstico Diferencial , Glioblastoma/diagnóstico por imagen , Glioma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Clasificación del Tumor , Reproducibilidad de los Resultados
12.
J Neurooncol ; 153(2): 251-261, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33905055

RESUMEN

PURPOSE: The peritumoral region (PTR) in glioblastoma (GBM) represents a combination of infiltrative tumor and vasogenic edema, which are indistinguishable on magnetic resonance imaging (MRI). We developed a radiomic signature by using imaging data from low grade glioma (LGG) (marker of tumor) and PTR of brain metastasis (BM) (marker of edema) and applied it on the GBM PTR to generate probabilistic maps. METHODS: 270 features were extracted from T1-weighted, T2-weighted, and apparent diffusion coefficient maps in over 3.5 million voxels of LGG (36 segments) and BM (45 segments) scanned in a 1.5T MRI. A support vector machine classifier was used to develop the radiomics model from approximately 50% voxels (downsampled to 10%) and validated with the remaining. The model was applied to over 575,000 voxels of the PTR of 10 patients with GBM to generate a quantitative map using Platt scaling (infiltrative tumor vs. edema). RESULTS: The radiomics model had an accuracy of 0.92 and 0.79 in the training and test set, respectively (LGG vs. BM). When extrapolated on the GBM PTR, 9 of 10 patients had a higher percentage of voxels with a tumor-like signature over radiological recurrence areas. In 7 of 10 patients, the areas under curves (AUC) were > 0.50 confirming a positive correlation. Including all the voxels from the GBM patients, the infiltration signature had an AUC of 0.61 to predict recurrence. CONCLUSION: A radiomic signature can demarcate areas of microscopic tumors from edema in the PTR of GBM, which correlates with areas of future recurrence.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Edema , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
13.
J Neurooncol ; 151(2): 267-278, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33196965

RESUMEN

PURPOSE: Quantitative MRI (qMRI) was performed using a 1.5T protocol that includes a novel chemical exchange saturation transfer/magnetization transfer (CEST/MT) approach. The purpose of this prospective study was to determine if qMRI metrics at baseline, at the 10th and 20th fraction during a 30 fraction/6 week standard chemoradiation (CRT) schedule, and at 1 month following treatment could be an early indicator of response for glioblastoma (GBM). METHODS: The study included 51 newly diagnosed GBM patients. Four regions-of-interest (ROI) were analyzed: (i) the radiation defined clinical target volume (CTV), (ii) radiation defined gross tumor volume (GTV), (iii) enhancing-tumor regions, and (iv) FLAIR-hyperintense regions. Quantitative CEST, MT, T1 and T2 parameters were compared between those patients progressing within 6.9 months (early), and those progressing after CRT (late), using mixed modelling. Exploratory predictive modelling was performed to identify significant predictors of early progression using a multivariable LASSO model. RESULTS: Results were dependent on the specific tumor ROI analyzed and the imaging time point. The baseline CEST asymmetry within the CTV was significantly higher in the early progression cohort. Other significant predictors included the T2 of the MT pools (for semi-solid at fraction 20 and water at 1 month after CRT), the exchange rate (at fraction 20) and the MGMT methylation status. CONCLUSIONS: We observe the potential for multiparametric qMRI, including a novel pulsed CEST/MT approach, to show potential in distinguishing early from late progression GBM cohorts. Ultimately, the goal is to personalize therapeutic decisions and treatment adaptation based on non-invasive imaging-based biomarkers.


Asunto(s)
Neoplasias Encefálicas/patología , Quimioradioterapia/métodos , Glioblastoma/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Neoplasias Encefálicas/terapia , Femenino , Estudios de Seguimiento , Glioblastoma/terapia , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Curva ROC , Adulto Joven
14.
J Ultrasound Med ; 39(12): 2415-2425, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32525248

RESUMEN

OBJECTIVES: To investigate whether timing and sequencing of ultrasound-stimulated microbubbles (USMBs) and external beam radiotherapy (XRT) affect the treatment response in a preclinical prostate cancer model. METHODS: Prostate cancer xenografts were treated with ultrasound-stimulated lipid microspheres before and after 8-Gy XRT. Treatments were separated by 0, 3, 6, 12, and 24 hours, with 5 tumors per group. Tumor effects were evaluated by microvessel density (measured by CD31 staining), cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling and hematoxylin-eosin staining), and hypoxia (carbonic anhydrase 9 staining). RESULTS: Administering USMBs 6 hours before XRT showed the maximum treatment effect using all 3 assays. At this time, the mean cell death index ± SD was 36% ± 10%, compared with 19% ± 4% for no separation between USMB treatment and XRT; the microvessel density was 9 ± 3 counts per field (19 ± 5 without separation); and the percentage of hypoxic cells was 10% ± 5% (21% ± 4%). The observed treatment effect was greater with USMBs before XRT than when administering XRT first, but these differences were not statistically significant. CONCLUSIONS: The maximum tumor effect was observed with USMBs delivered 6 hours before XRT. The sequencing of treatment did not have a significant effect on the tumor response.


Asunto(s)
Microburbujas , Neoplasias de la Próstata , Terapia Combinada , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Ultrasonografía
15.
BMC Cancer ; 19(1): 306, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943923

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NAC) is increasingly used to treat locally advanced breast cancer (LABC). Improved response to NAC correlates with better survival outcomes. The dual purpose of this study is to report recurrence and survival outcomes for LABC patients treated with NAC, surgery and adjuvant radiotherapy and to correlate these outcomes with tumour response after NAC using multiple response assessment methods. METHODS: All LABC patients treated for curative intent with NAC, surgery, and adjuvant radiotherapy at our institute between January 2009 and December 2014 were included for analysis. NAC was mostly anthracycline and taxane-based; radiotherapy consisted of 50 Gy to the breast/chest wall and regional lymph nodes. Response to NAC was categorized using synoptic pathology reports, modified-RECIST and Chevallier scores. Survival curves were generated by the Kaplan-Meier method and compared using the log-rank test. RESULTS: The cohort included 103 patients nearly equally divided between Stage II (n = 53) and Stage III (n = 50). Rates of locoregional control (LRC), recurrence-free survival (RFS), and overall survival (OS) were 99, 98, and 100% at 1 year and 89, 69 and 77% at 5 years, respectively. Responses to NAC did not correlate with LRC (p > 0.05) but did correlate with RFS and OS (p < 0.05), except that the Chevallier score did not predict RFS (p = 0.06). Using bivariate Cox modeling tumour size before (p = 0.003) and after (p < 0.001) NAC, stage group (p = 0.05), and response assessed by synoptic pathology (p = 0.05), modified-RECIST (p = 0.001), and Chevallier score (p = 0.015) all predicted for RFS. No factors predicted for LRC. CONCLUSION: Pathologic response by all tested methods correlated with improved survival but were not associated with decreased LRC.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Terapia Neoadyuvante/métodos , Adulto , Quimioterapia Adyuvante , Femenino , Humanos , Estimación de Kaplan-Meier , Metástasis Linfática , Persona de Mediana Edad , Radioterapia Adyuvante , Análisis de Supervivencia
17.
Biophys J ; 112(12): 2634-2640, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636919

RESUMEN

Although it has previously been shown that the spectral analysis of ultrasound backscatter data is sensitive to the cellular changes caused by apoptosis, the sensitivity of spectral analysis to oncosis or ischemic cell death had not previously been studied. Whereas many anticancer treatments induce apoptosis, others induce cell starvation, or oncosis. HT-29 colon adenocarcinoma cells were formed into pellets and covered in phosphate-buffered saline at room temperature for 56 h. The pellets were imaged every 8 h with high-frequency (55 MHz) ultrasound and the raw radio-frequency data processed. The lack of nutrients available to the cells induced cell death due to oncosis. The attenuation slope, speed of sound, spectral slope, and midband fit were estimated at each of the eight time points to identify changes as the cells died due to starvation. The spectral slope decreased monotonically over the 56 h, whereas the attenuation slope showed an increase between 1 and 48 h, followed by a slight decrease between 48 and 56 h. The midband fit did not vary over time. The speed of sound increased from 1514 to 1532 m/s over the first 24 h, after which time it plateaued. These in vitro results indicate different trends in ultrasound parameter changes from those of in vitro apoptotic cells, suggesting that these different methods of cell death can be identified not only by morphological markers, but also by specific ultrasound signatures.


Asunto(s)
Muerte Celular , Tamaño del Núcleo Celular , Tamaño de la Célula , Recuento de Células , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Etiquetado Corte-Fin in Situ , Procesamiento de Señales Asistido por Computador , Ultrasonografía
18.
Br J Cancer ; 116(10): 1329-1339, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28419079

RESUMEN

BACKGROUND: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. METHODS: Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. RESULTS: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. CONCLUSIONS: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Lobular/tratamiento farmacológico , Tomografía Óptica/métodos , Antraciclinas/administración & dosificación , Área Bajo la Curva , Neoplasias de la Mama/patología , Hidrocarburos Aromáticos con Puentes/administración & dosificación , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/patología , Quimioterapia Adyuvante , Femenino , Hemoglobinas/metabolismo , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Oxígeno/metabolismo , Valor Predictivo de las Pruebas , Curva ROC , Análisis Espectral , Taxoides/administración & dosificación , Trastuzumab/administración & dosificación , Carga Tumoral
19.
J Acoust Soc Am ; 142(1): 268, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28764480

RESUMEN

High frequency ultrasound backscatter signals from sea urchin oocytes were measured using a 40 MHz transducer and compared to numerical simulations. The Faran scattering model was used to calculate the ultrasound scattered from single oocytes in suspension. The urchin oocytes are non-nucleated with uniform size and biomechanical properties; the backscatter from each cell is similar and easy to simulate, unlike typical nucleated mammalian cells. The time domain signal measured from single oocytes in suspension showed two distinct peaks, and the power spectrum was periodic with minima spaced approximately 10 MHz apart. Good agreement to the Faran scattering model was observed. Measurements from tightly packed oocyte cell pellets showed similar periodic features in the power spectra, which was a result of the uniform size and consistent biomechanical properties of the cells. Numerical simulations that calculated the ultrasound scattered from individual oocytes within a three dimensional volume showed good agreement to the measured signals and B-scan images. A cepstral analysis of the signal was used to calculate the size of the cells, which was 78.7 µm (measured) and 81.4 µm (simulated). This work supports the single scattering approximation, where ultrasound is discretely scattered from single cells within a bulk homogeneous sample, and that multiple scattering has a negligible effect. This technique can be applied towards understanding the complex scattering behaviour from heterogeneous tissues.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Oocitos/fisiología , Strongylocentrotus purpuratus/fisiología , Ondas Ultrasónicas , Ultrasonografía/métodos , Animales , Fenómenos Biomecánicos , Tamaño de la Célula , Femenino , Análisis Numérico Asistido por Computador , Dispersión de Radiación , Factores de Tiempo
20.
Biol Chem ; 396(6-7): 645-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25741736

RESUMEN

Cancer therapies result in the killing of cancer cells but remain largely ineffective, with most patients dying of their disease. The methodology described here is a new image-guided cancer treatment under development that relies on physical methods to alter tumour biology. It enhances tumour responses to radiation significantly by synergistically destroying tumour blood vessels using microbubbles. It achieves tumour specificity by confining the ultrasonic fields that stimulate microbubbles to tumour location only. By perturbing tumour vasculature and activating specific genetic pathways in endothelial cells, the technique has been demonstrated to sensitise the targeted tissues to subsequent therapeutic application of radiation, resulting in significantly enhanced cell killing through a ceramide-dependent pathway initiated at the cell membrane. The treatment reviewed here destroys blood vessels, significantly enhancing the anti-vascular effect of radiation and improving tumour cure. The significant enhancement of localised tumour cell kill observed with this method means that radiation-based treatments can be potentially made more potent and lower doses of radiation utilised. The technique has the potential to have a profound impact on the practice of radiation oncology by offering a novel and safe means of reducing normal tissue toxicity while at the same time significantly increasing treatment effectiveness.


Asunto(s)
Microburbujas , Ondas Ultrasónicas , Animales , Apoptosis/efectos de la radiación , Ceramidas/metabolismo , Humanos , Modelos Biológicos , Tolerancia a Radiación , Esfingomielina Fosfodiesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA