Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Environ Manage ; 344: 118609, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37473553

RESUMEN

Optimal manure treatment aimed at usage as agricultural soil fertilizers is a prerequisite ecological pollution control strategy. In this work, livestock manure-based fertilizers were collected from 71 animal farms across 14 provinces in China. The contamination levels and potential ecotoxicological risks of residual steroid estrogens (SEs): estrone (E1), estriol (E3), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2) and xenoestrogen (XE) bisphenol A (BPA), were investigated. The results showed that the occurrence frequencies for SEs and XE ranged from 66.67% to 100%, and the mean concentration varied considerably across the study locations. The total content of SEs and XE in Hebei province was the highest, and swine manure-based fertilizers concentrations were higher than the levels reported in other animal fertilizers. Compared with farm level manure, manure-based fertilizers are processed by composting, and the micropollutants quantities are significantly reduced (mean: 87.65 - 534.02 µg/kg). The total estradiol equivalent quantity (EEQ) that might migrate to the soil was estimated to be 1.23 µg/kg. Based on the estimated application rate of manure, 38% of the fertilizers risk quotients exceeded 0.1, indicating medium to high risks pressure on terrestrial organisms. Nonetheless, the estrogenic risk was lower in manure-based fertilizers than in manure. This study highlights the significance of proper treatment of livestock manure and designing an optimal manure fertilization strategy to mitigate the risks posed by SEs and XEs to the agroecosystems.


Asunto(s)
Estrógenos , Estiércol , Porcinos , Animales , Estrógenos/análisis , Estiércol/análisis , Fertilizantes/análisis , Estradiol/análisis , Suelo/química , Monitoreo del Ambiente/métodos
2.
Molecules ; 28(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570889

RESUMEN

The increased application of drugs during the COVID-19 pandemic has resulted in their increased concentration in wastewater. Conventional wastewater treatment plants do not remove such pollutants effectively. Adsorption is a cheap, effective, and environmentally friendly method that can accomplish this. On the other hand, maintaining organic waste is required. Thus, in this study, plant waste-derived pelletized biochar obtained from different feedstock and pyrolyzed at 600 °C was applied for the adsorption of nitazoxanide, an antiparasitic drug used for the treatment of SARS-CoV-2. The adsorption was fast and enables one to remove the drug in one hour. The highest adsorption capacity was noted for biochar obtained from biogas production (14 mg/g). The process of NTZ adsorption was governed by chemisorption (k2 = 0.2371 g/mg min). The presence of inorganic ions had a detrimental effect on adsorption (Cl-, NO3- in 20-30%) and carbonates were the most effective in hindering the process (60%). The environmentally relevant concentration of DOM (10 mg/L) did not affect the process. The model studies were supported by the results with a real wastewater effluent (15% reduction). Depending on the applied feedstock, various models described nitazoxanide adsorption onto tested biochars. In summary, the application of carbonaceous adsorbents in the pelletized form is effective in nitazoxanide adsorption.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Adsorción , Pandemias , SARS-CoV-2 , Carbón Orgánico , Cinética
3.
Environ Res ; 214(Pt 1): 113787, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35787365

RESUMEN

In the last years, there is great progress in the field of studies on the thermal transformation of wastes into valuable materials such as biochar. High-temperature processes, however, are connected with the formation of polycyclic aromatic hydrocarbons (PAHs) with confirmed toxicity. However, during pyrolysis, some derivatives containing oxygen, nitrogen, or sulfur can also be formed. Their toxicity is expected to be higher than parent PAHs. However, the key parameter in the agricultural application of carbonaceous materials is PAHs' bioavailability. The aim of the presented studies was the determination of the effect of various feedstock (wheat straw (Triticum L.), willow (Salix viminalis), sunflower, residues from softwood and hardwood, sewage sludges, and residues from biogas production) on the formation of PAHs and their derivatives (O-, N-PAHs) in biochar and their bioavailability. The results indicated that the content of total and bioavailable PAHs in obtained biochar was rather low. The concentration of total PAHs in plant-derived biochar reached 57 ± 3 ng g-1 - 181 ± 8 ng g-1, whereas sewage sludge-derived biochar contained from 121 ± 6 ng g-1 to 188 ± 9 ng g-1 of PAHs. The highest concentration of PAHs was noted in biochar obtained from residues from biochar production - up to 202 ± 9 ng g-1. The total concentration of bioavailable PAHs was lower and reached 2-4.45 ng L-1 for plant-derived biochar, 3-40 ng L-1 for sewage sludge-derived biochar. The highest content of bioavailable PAHs was noted in biochar obtained from residues from biogas production: 9-42 ng L-1 indicating that increased attention should be paid to using this type of biochar. Among PAHs derivatives, nitronaphthalene, 1-methyl-5-nitronaphthalene, 1-methyl-6-nitronaphthalene, 9,10-anthracenedione, 4H-cyclopenta(def)phenanthrene, nitropyrene were determined at various levels and their concentrations were from below the limit of detection (LOD) to 28 ng L-1 for plant-derived biochar, 3-16 ng L-1 for biochar obtained from residues from biogas production, and 5-45 ng L-1 for sewage sludge-derived biochar. The content of bioavailable PAHs derivatives was, generally, one order of magnitude lower than parent PAHs derivatives, and reached from below LOD up to almost 1 ng L-1 for plant-derived biochar, from 0.5 to 2 ng L-1 for biochar obtained from residues from biogas production, and from 0.2 to almost 5 ng L-1 for sewage sludge-derived biochar confirming the safety of agricultural usage of biochar.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Salix , Biocombustibles , Disponibilidad Biológica , Carbón Orgánico , Plantas , Aguas del Alcantarillado
4.
Sensors (Basel) ; 22(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408052

RESUMEN

The dynamic production and usage of pharmaceuticals, mainly painkillers, indicates the growing problem of environmental contamination. Therefore, the monitoring of pharmaceutical concentrations in environmental samples, mostly aquatic, is necessary. This article focuses on applying screen-printed voltammetric sensors for the voltammetric determination of painkillers residues, including non-steroidal anti-inflammatory drugs, paracetamol, and tramadol in environmental water samples. The main advantages of these electrodes are simplicity, reliability, portability, small instrumental setups comprising the three electrodes, and modest cost. Moreover, the electroconductivity, catalytic activity, and surface area can be easily improved by modifying the electrode surface with carbon nanomaterials, polymer films, or electrochemical activation.


Asunto(s)
Nanoestructuras , Agua , Carbono/química , Electrodos , Nanoestructuras/química , Reproducibilidad de los Resultados
5.
J Environ Manage ; 270: 110870, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721314

RESUMEN

In this study, elsmoreite/tungsten oxide is used to form a heterojunction with ZnS-containing industrial waste. The effect of the elsmoreite/tungsten oxide content on photocatalytic activity of ZnS using the different ratios of ZnS:Na2WO4 in the synthesis solution is estimated. The initial ZnS:Na2WO4 ratio leads to the formation of hexagonal WO3∙0.33H2O on the surface of ZnS. A further increase in the ZnS:Na2WO4 ratio results in the domination of cubic WO3∙0.5H2O over hexagonal WO3. The ultraviolet-visible (UV-Vis) diffuse reflectance spectra of elsmoreite/tungsten oxide@ZnS composite photocatalysts show that the absorption onset shifts monotonously towards lower wavelengths from 450 nm to 400 nm. The microrods of hexagonal WO3 and {111}-truncated submicron-sized crystals of WO3∙0.5H2O are grown on the ZnS surface. The transmission electron microscopy (TEM) results confirm the formation of a heterojunction between elsmoreite/tungsten oxide and ZnS. The photocatalytic activities of elsmoreite/tungsten oxide@ZnS composite photocatalysts are evaluated for the degradation of selected pharmaceuticals and personal care products (PPCPs): metoprolol - Mt, triclosan - TCS, and caffeine - CAF both in single and in mixture solutions. The elsmoreite/tungsten oxide@ZnS photocatalysts degrade 50% of Mt, 70% TCS, and 60% CAF in single solution and 35% of Mt, 20% of CAF, and 20% of TCS in mixture solution. Hydrated Mt and TCS are preferably adsorbed on the surface of WO3∙0.5H2O (111), and CAF has better affinity to the surface of WO3. The elsmoreite/tungsten oxide@ZnS photocatalysts show a good reusability. Hydroxyl radicals (•OH) and photogenerated holes (h+) are involved in the photocatalytic removal of Mt, while only h+ is involved in the photocatalytic removal of TCS. Interestingly, none of the above-mentioned species is involved in the photocatalytic removal of CAF. Also, nontoxic CAF is mainly degraded into intermediates with higher toxicity. The toxicity of the photocatalytically treated model wastewater in the mixture solution, tested with Vibrio fischeri, is much lower than that in the single solution.


Asunto(s)
Cosméticos , Tungsteno , Catálisis , Óxidos , Sulfuros , Compuestos de Zinc
6.
Environ Res ; 155: 1-6, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28167266

RESUMEN

The carbon nanotubes (CNT) present in the wastewater subjected to treatment will possess altered physico-chemical properties. The changed properties will result in the unknown behavior of CNT in the environment after disposal; and it is expected to differ from their pristine analogues. In the present paper the effect of sorption of dissolved organic matter with fulvic acids (FA) as representatives onto UV and/or H2O2 treated CNT was tested. Both kinetics and mechanism of sorption was estimated. The chemical adsorption was a rate limiting step and a pseudo-second order kinetics described the sorption of FA onto UV and/or H2O2 treated CNT. The treating increased affinity towards FA and treating by UV and H2O2 simultaneously possessed greater impact on k2 than UV and H2O2 separately. The greatest effect on CNT sorption capacity revealed H2O2. The sorption mechanism was described by Temkin (CNT-H2O2) and Dubinin-Radushkevich model. The increase in CNT surface disorder caused by UV and/or H2O2 treatment favored sorption of FA via π-π interactions (exfoliated surface and disordered CNT walls). FA sorption occurred between aromatic rings of FA and CNT and hydrogen bonds formed with the oxygen functional groups. The results indicate that UV and/or H2O2 treatment affected the sorption capacity and affinity of CNT towards FA.


Asunto(s)
Benzopiranos/química , Peróxido de Hidrógeno/química , Nanotubos de Carbono , Rayos Ultravioleta , Contaminantes Químicos del Agua , Adsorción , Nanotubos de Carbono/química , Nanotubos de Carbono/efectos de la radiación , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación
7.
Environ Res ; 150: 173-181, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27290658

RESUMEN

The fate of carbon nanotubes (CNT) in the environment will be governed by the presence of natural dissolved organic matter (DOM). Many studies indicate that CNT create stabilized suspensions in the presence of DOM. Easier transport in the environment may indicate their greater hazard. However these studies describe the interactions of DOM with as produced CNT. In the present studies the interactions of UV and/or H2O2 treated wastewater containing CNTOH or CNTCOOH with the naturally occurred fulvic acids (FA) were presented. FA sorption, both kinetics and mechanism, were described using batch regime. The sorption of FA followed a pseudo-second order kinetics and was described with the highest accuracy by Langmuir or Dubinin-Radushkevich model for CNTOHs and Langmuir, Temkin or Dubinin-Radushkevich - for CNTCOOHs. The mechanism of FA sorption onto CNTOHs was ascribed to π-π, heterogeneous and electrostatic interactions. The π-π and electrostatic interactions can the mostly defined FA adsorption onto CNTCOOHs. The parameters affecting FA sorption were combination of porosity and dispersity.


Asunto(s)
Benzopiranos/química , Peróxido de Hidrógeno/química , Nanotubos de Carbono/química , Rayos Ultravioleta , Aguas Residuales/análisis , Adsorción , Ácidos Carboxílicos/química , Hidróxidos/química , Cinética
8.
Environ Res ; 137: 176-84, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25543548

RESUMEN

For the photocatalytic removal of bisphenol A (BPA) and carbamazepine (CBZ) from water solution a new multiwall-carbon nanotubes and TiO2/SiO2 nanocomposites (MWCNT-TiO2-SiO2) were applied. Nanocomposites with the addition of 0.15-17.8 wt% MWCNT show high potential for the removal of both pollutants. The starting concentration of each contaminant was halved during 20 min of UVA irradiation. The decomposition process of CBZ over investigated nanocomposites proceeded differently than it was observed for the classical photocatalyst P25. The kinetics of the removal followed as a pseudo-first order regime with the k1 in range 0.0827-0.1751 min(-1) for BPA and 0.0131-0.0743 min(-1) for CBZ. Toxicity to Vibrio fischeri and Daphnia magna was significantly reduced indicating formation of non-toxic products of photooxidation of tested contaminants.


Asunto(s)
Nanopartículas del Metal/química , Nanocompuestos/química , Nanotubos de Carbono/química , Dióxido de Silicio/química , Titanio/química , Eliminación de Residuos Líquidos , Purificación del Agua/instrumentación , Aliivibrio fischeri/efectos de los fármacos , Animales , Compuestos de Bencidrilo/química , Carbamazepina/química , Catálisis , Daphnia/efectos de los fármacos , Oxidación-Reducción , Fenoles/química , Fotólisis , Rayos Ultravioleta , Aguas Residuales/química , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/química
9.
Ecotoxicol Environ Saf ; 104: 247-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24726936

RESUMEN

The aim of the research was the determination of the toxicity of photocatalytically treated water contaminated by different pharmaceuticals: chloramphenicol (CPL), diclofenac (DCF) or metoprolol (MT). Daphtoxkit F™ with Dapnia magna and Microtox(®) with Vibrio fischeri were used to evaluate the toxicity of the water before and after treatment. D. magna showed higher sensitivity to the presence of pharmaceuticals than V. fischeri. Generally, both tested organisms revealed the greatest sensitivity to the presence of CPL. The application of photocatalytic oxidation has resulted in decreased toxicity. It may confirm the reduction of high toxic parent compounds to less toxic metabolites. The toxicity was reduced in the range from 30% to 100% depending on pharmaceutical tested. The highest reduction of toxicity to V. fischeri and D. magna was observed to MT and CPL respectively. Depending on bioassay the toxicity decrease as follows: CPL>DCF>MT for D. magna and CPL>MT>DCF for V. fischeri.


Asunto(s)
Aliivibrio fischeri/efectos de los fármacos , Daphnia/efectos de los fármacos , Ecotoxicología , Compuestos Orgánicos/metabolismo , Compuestos Orgánicos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Concentración 50 Inhibidora , Oxidación-Reducción , Preparaciones Farmacéuticas/metabolismo , Purificación del Agua
10.
J Hazard Mater ; 465: 133159, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061130

RESUMEN

During biochar preparation or application some toxic substances may be formed. The established limitations of the content of polycyclic aromatic hydrocarbons (PAHs) aim to monitor the fate of PAHs in the life cycle of biochar. The latest studies have revealed that besides PAHs, some of their derivatives with confirmed toxicity are formed. There has been no policy regards PAH derivatives in biochar yet. The aim of the presented studies was the estimation the changes in the content of PAHs and their derivatives during the agricultural application of biochar. A pot experiment with grass revealed that in a short time, both the content of PAHs and their derivatives was reduced. Similarly, when biochar was added to soil in a long-term experiment, the content of determined derivatives was below the limit of detection, whereas interestingly, the content of pristine PAHs increased with time. Co-addition of biochar and sewage sludge increased the content of PAHs and their derivatives indicating potential environmental hazard due to their presence. However, the key point is the estimation of the bioavailability of PAHs and their derivatives as only the bioavailable fraction is revealing the environmental hazard.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Carbón Orgánico , Aguas del Alcantarillado
11.
Sci Total Environ ; 945: 173933, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38880153

RESUMEN

Observed nowadays wide pollution of the environment with microplastic and phthalic acid esters (PAEs) (such as dimethyl phthalate, DMP; diethyl phthalate, DEP; dibutyl phthalate, DBP; benzyl butyl phthalate, BBP; di-(2-ethylhexyl) phthalate, DEHP and di-n-octyl phthalate, DNOP) is a result of their increased production and usage. Weak bonding with polymer matrix enables their easier mobilization in the environment and increased bioavailability. The aim of the presented studies was the estimation of the fate of six priority PAEs in the soil-vegetable system and the application of biochar to immobilize PAEs in the soil preventing their bioavailability to lettuce. Both the acute (one full lettuce development period) and prolongated effect (lettuce cultivated after 10 weeks from the first PAEs contamination) were estimated to examine the long-time exposure under crop rotation. The addition of 1 % of corn-derived biochar immobilized PAEs in the soil efficiently (up to 4 times increased concentration) with the following order: DBP < DEP < DMP < DEHP < DNOP < BBP. Bioavailable PAEs were determined in lettuce roots (DMP, BBP, DEHP), and lettuce leaves (DEP, DBP, DNOP) but the presence of biochar lowered their content. PAEs, although not available for lettuce, were available for other organisms, confirming that the bioavailability or lack of nutrients is of great importance in PAEs-polluted soil. In long-time experiments, without biochar amendment, all PAEs were 3-12 times more bioavailable and were mainly accumulated in lettuce roots. The biochar addition significantly reduces (1.5-11 times) PAEs bioavailability over time. However, the PAEs content in roots remained significantly higher in samples with crop rotation compared to samples where only lettuce was grown. The results confirmed that biochar addition to the soil reduces their bioavailability and mobility inside the plant, limiting their transport from roots to leaves and reducing the exposure risk but confirming that lettuce leaves may be a safe food when cultivated in PAEs-polluted soil.


Asunto(s)
Carbón Orgánico , Lactuca , Ácidos Ftálicos , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Suelo/química , Ésteres , Disponibilidad Biológica , Dietilhexil Ftalato
12.
Food Chem ; 440: 138222, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134829

RESUMEN

Phthalates are commonly used as plasticizers, and solvents in industry and households. We propose an application of the QuEChERS method for the determination of six PAEs in the soil and lettuce (roots and leaves) by GC-MS/MS. The QuEChERS method validation procedure was performed and good linearity (>0.997), recovery (97.2-99.1 %), very low detection limits (0.09-0.43 ng/g), and satisfactory inter- and intraday precision (∼4%) were obtained confirming that QuEChERS GC-MS/MS applied for PAEs determination in the environmental samples is a cheap and environmentally friendly method. In general, the higher the number of carbon atoms in PAEs, the higher the percentage noted in the lettuce roots. At higher PAEs concentration (60 ng/g) the main bis(2-ethylhexyl) phthalate (DEHP) sink were roots whereas at lower concentrations (30 ng/g) most of DEHP was noted in lettuce leaves implying that the fate of PAEs was governed not by the chemical structure of PAEs but rather partitioning (logKow).


Asunto(s)
Ácidos Ftálicos , Suelo , Suelo/química , Espectrometría de Masas en Tándem , Lactuca , Cromatografía de Gases y Espectrometría de Masas/métodos , Ésteres/análisis , Ácidos Ftálicos/análisis , China
13.
J Hazard Mater ; 467: 133697, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325092

RESUMEN

Thermal treatment are commonly used to address organic contaminated soils. In particular, the pyrolysis of organic substances can result in the creation of environmentally persistent free radicals (EPFRs). We investigated a steelworks site in Chongqing (China) to observe changes in EPFRs before and after thermal treatment. Our findings revealed that the EPFRs were carbon-centered radicals with a g-factor < 2.0030 and a spin density ranging from n.d.-5.23 × 1015 spins/mg. The formation of EPFRs was driving by polycyclic aromatic hydrocarbons (PAHs), Mn, Cu, and total organic carbon (TOC). Following the thermal treatment, the spin densities of EPFRs increased by a factor of 0.25 to 1.81, with maximum levels reached at 300 °C. High molecular weight PAHs exhibited high heat capacity, enabling the generation of more EPFRs. The thermal decay of EPFRs occurred in two stages, with the shortest 1/e lifetime lasting up to 16.8 h. Raising the temperature or prolonging time can significantly reduce EPFRs levels. Thermal treatment increased the generation of EPFRs, hydroxyl radicals (•OH) and superoxide radical (•O2-), leading to a decrease in bacterial luminescence. Specifically, •OH contributed to approximately 73% of the B. brilliantus inhibition. Our results highlight that the thermal treatment significantly enhance EPFRs concentrations, and the treated soil remained ecologically risky. The knowledge of the formation of EPFRs and their biotoxicity is shedding new light on the thermal treatment risk management.

14.
Bioresour Technol ; 407: 131110, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009047

RESUMEN

Agricultural or environmental application of biochar (BC) is connected with the introduction of biochar-derived components among which polycyclic aromatic hydrocarbons (PAHs) and heavy metals are the most toxic. Their presence and bioavailability are crucial considering biochar toxicity. The effect of feedstock and pyrolysis temperature on the physicochemical properties of produced biochar and contaminant content was established and combined with toxicity to a broad range of living organisms. The obtained data revealed that predicting the bioavailability of PAHs using the total content is misleading. The toxicity was influenced by factors in the following way: the bioavailable PAHs > ash > total PAHs content in BC stressing the role of BC physicochemical characteristics. Among tested BC properties, surface functionalization, e.g. presence of oxygen-containing functional groups was crucial in revealing the toxicity. The data clearly indicate that additional research is required to determine BC's impact on various organisms and performing one ecotoxicity test is not sufficient.

15.
Sci Total Environ ; 924: 171662, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38485009

RESUMEN

In polycyclic aromatic hydrocarbon (PAH) contaminated soils, bioremediation is superior to other strategies owing to its low cost and environmental friendliness. However, dissolved organic matter (DOM) and indigenous bacterial communities can affect the efficiency of PAH-degrading bacteria (PDB). This study found that exogenous PDB (C1) including the genera Acinetobacter, Stenotrophomonas, and Comamonas, decreased the bacterial diversity of Alfisol, Ultisol, Inceptisol, and Mollisol, and DOM enhanced the diffusion of PDB and the bioavailability of PAH. In addition, bacteria preferred to ingest low molecular weight DOM fractions, and the abundances of lipid-like and protein-like substances decreased by 0.12-3.03 % and 1.73-4.60 %. The DOM fractions had a more marked influence on the indigenous bacteria than the exogenous PDB, and PDB dominated the PAH biodegradation process in the soils. More COO functional groups promoted the utilization of higher molecular weight-related homologue fractions by bacteria, and lower molecular weight fractions carrying more CH2 functional groups declined during biodegradation. This study investigated the variations in bacterial communities during biodegradation and revealed the effects of DOM fractions on biodegradation in PAH-contaminated soils at the molecular level. These results will promote the development of bioremediation strategies for organics-contaminated soil and provide guidance for prediction models of soil biodegradation kinetics.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Biodegradación Ambiental , Suelo , Materia Orgánica Disuelta , Contaminantes del Suelo/análisis , Bacterias/metabolismo , Microbiología del Suelo
16.
Water Sci Technol ; 68(6): 1322-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24056430

RESUMEN

Application of mesoporous C- and C,N-codoped TiO2 in the removal of diclofenac from water was studied. The sol-gel method was used for the preparation of the photocatalysts. The physicochemical properties of studied materials were characterized by BET (Brunauer, Emmett and Teller), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and X-ray diffraction (XRD) methods. XPS confirmed the incorporation of nitrogen and carbon atoms into TiO2 lattice. The synthesized catalysts were effective in the removal of the studied pollutant from water and enabled reduction of the COD (chemical oxygen demand) value of the wastewater by at least 60%. The process of diclofenac photooxidation over the C,N-codoped and C-doped TiO2 photocatalysts proceeded similarly and was followed by pseudo-first order kinetics. The increase in calcination temperature resulted in the rutile fraction (5%) slightly lowering the effectiveness of treatment. The results over pure anatase structures confirmed that anatase has usually a better photocatalytic activity than rutile. The best changes in the water quality were observed during the first 50 min of treatment, but mineralization of pollutant did not lead to complete.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Diclofenaco/química , Titanio/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Resinas Acrílicas/química , Carbono/química , Catálisis , Nanocompuestos/química , Nitrógeno/química , Fotólisis , Poliestirenos/química , Titanio/efectos de la radiación , Rayos Ultravioleta , Aguas Residuales
17.
Sci Total Environ ; 886: 163966, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37160183

RESUMEN

Toxic polycyclic aromatic hydrocarbons (PAHs) and more toxic N- and O-containing derivatives can be determined in biochar. However, their fate in the environment and bioavailability depends on many parameters and was not studied yet. In the presented studies a set of biochars obtained from various feedstock at the same pyrolysis temperature (600 °C) subjected to environmental pressure e.g. soil microorganisms and enzymes was described. Presented study aimed to determine the effect of biological agents on the physicochemical characteristic and the content of PAHs and their derivatives in biochars after long-term treatment (6 months). The results indicated that enzymatic aging usually lowered (up to 94 %) the content of PAHs and their derivatives in biochar. Simultaneously, biological aging reduced the bioavailability of tested compounds. Considering the total fraction of PAHs and their derivatives, biochars treated with nutrients and microbial inoculum were characterized by the lowest content of analytes (even in comparison to biochars treated with nutrients alone). To complement the obtained results, the content of C, H, N, O, and ash as well as specific surface area, aromaticity, polarity, and hydrophilicity in biochar before and after modifications were determined. In general, enzymatic aging increased, and biological aging decreased the content of C% and H% in biochar. Both aging processes lowered the H/C ratio which indicated the decrease of the aromatization degree for artificially altered biochar.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Carbón Orgánico/química , Suelo/química , Temperatura
18.
Sci Total Environ ; 863: 160896, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36516923

RESUMEN

The application of waste-derived highly efficient adsorbent for organic pollutants removal from water and wastewater is presented. Highly porous carbon beads with radially aligned macrochannels were prepared from asphaltene. Well-ordered inwardly aligned macrovoids favored solute diffusion and maximized the liquid accommodation capacity. A further N-doping could modulate the sorbent hydrophilicity leading to an outstanding absorption performance for a range of organic solvents and oily chemicals. N-doped carbon beads were effective sorbents of lopinavir (LNV) and ritonavir (RNV) from water and wastewater. The process of sorption was fast, and the highest removal was noted for RNV than LPV. N-doping favored LNV and RNV adsorption due to the increased porous structure of N-doped asphaltene beads. The chemisorption of both LPV and RTV was a rate-limiting step. The presence of co-pollutants in treated wastewater enhanced LPV and RNV removal and an up to 470 % increase was noted. The presence of LPV or RTV in distilled water was not toxic to Aliivibrio fischeri or even can stimulate their growth. However, after the adsorption process, the solution of RTV reduced its toxicity significantly and the final solution was not toxic. The opposite effect was noted for LPV. Given the repeatability, high removal performance, and cost-effectiveness of the asphaltene-based carbon microtubes when compared to other well-known sorbents such as carbon nanotubes, they demonstrated great potential as a low-cost and effective agent for long-life water filtration and wastewater treatment.

19.
Materials (Basel) ; 16(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770101

RESUMEN

Water is the most important life-giving resource on earth. Nowadays, intensive growth of the world population has resulted in increased water consumption and the production of wastewater. Additionally, the presence of pharmaceuticals in treated conventional wastewater or even in the environment is strictly indicating that present techniques of wastewater treatment are not efficient enough and are not designed to remove such pollutants. Scarce water resources in the world are the main driving force for the innovation of novel techniques of water and wastewater treatment. Photocatalysis, as one of the advanced oxidation processes, enables the transformation of recalcitrant and toxic pollutants into CO2, water, and inorganic salts. In the present paper, the photocatalytic oxidation of ß-blockers-metoprolol and propranolol-are described. For photocatalytic oxidation, novel TiO2 photocatalysts modified with biochar were used. Photocatalysts were prepared by sol-gel method and the effect of photocatalysts type, presence of inorganic ions, dissolved organic matter, and different water matrix was established. The results indicate that using only the decrease in the tested pollutant concentration is not effective enough in establishing the treatment method's safety. There is a need to use additional testing such as ecotoxicity tests; however, the key parameter is the properly chosen tested organism.

20.
Sci Total Environ ; 824: 153967, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35182634

RESUMEN

In coronavirus disease 2019 (COVID-19), among many protocols, lopinavir and ritonavir in individual or combined forms with other drugs have been used, causing an increase in the concentration of antiviral drugs in the wastewater and hospital effluents. In conventional wastewater treatment plants, the removal efficiency of various antiviral drugs is estimated to be low (<20%). The high values of predicted no-effect concentration (PNEC) for lopinavir and ritonavir (in ng∙L-1) reveal their high chronic toxicity to aquatic organisms. This indicates that lopinavir and ritonavir are current priority antiviral drugs that need to be thoroughly monitored and effectively removed from any water and wastewater samples. In this study, we attempt to explore the impacts of two photo-induced processes (photolysis and photocatalysis) on the toxicity of treated water and wastewater samples containing lopinavir and ritonavir to zebrafish (Danio rerio) and marine bacteria (Allivibrio fischeri). The obtained results reveal that traces of lopinavir in water under photo-induced processes may cause severe problems for Danio rerio, including pericardial edema and shortening of the tail, affecting its behavior, and for Allivibrio fischeri as a result of the oxygen-depleted environment, inflammation, and oxidative stress. Hence, lopinavir must be removed from water and wastewater before being in contact with light. In contrast, the photo-induced processes of ritonavir-containing water and wastewater reduce the toxicity significantly. This shows that even if the physicochemical parameters of water and wastewater are within the standard requirements/limits, the presence of traces of antiviral drugs and their intermediates can affect the survival and behavior of Danio rerio and Allivibrio fischeri. Therefore, the photo-induced processes and additional treatment of water and wastewater containing ritonavir can minimize its toxic effect.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ritonavir , Animales , Antivirales , Combinación de Medicamentos , Lopinavir/uso terapéutico , Lopinavir/toxicidad , Ritonavir/uso terapéutico , Ritonavir/toxicidad , Aguas Residuales , Agua , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA