Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cereb Cortex ; 30(5): 3352-3369, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32043145

RESUMEN

Electrophysiological recordings have established that GABAergic interneurons regulate excitability, plasticity, and computational function within local neural circuits. Importantly, GABAergic inhibition is focally disrupted around sites of brain injury. However, it remains unclear whether focal imbalances in inhibition/excitation lead to widespread changes in brain activity. Here, we test the hypothesis that focal perturbations in excitability disrupt large-scale brain network dynamics. We used viral chemogenetics in mice to reversibly manipulate parvalbumin interneuron (PV-IN) activity levels in whisker barrel somatosensory cortex. We then assessed how this imbalance affects cortical network activity in awake mice using wide-field optical neuroimaging of pyramidal neuron GCaMP dynamics as well as local field potential recordings. We report 1) that local changes in excitability can cause remote, network-wide effects, 2) that these effects propagate differentially through intra- and interhemispheric connections, and 3) that chemogenetic constructs can induce plasticity in cortical excitability and functional connectivity. These findings may help to explain how focal activity changes following injury lead to widespread network dysfunction.


Asunto(s)
Excitabilidad Cortical/fisiología , Interneuronas/fisiología , Vías Nerviosas/fisiopatología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiopatología , Animales , Electrocorticografía , Interneuronas/metabolismo , Ratones , Inhibición Neural/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Imagen Óptica , Parvalbúminas , Células Piramidales/metabolismo , Procesamiento de Señales Asistido por Computador , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/metabolismo , Vibrisas/inervación
2.
J Neurosci ; 35(35): 12137-51, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26338325

RESUMEN

In AD, an imbalance between Aß production and removal drives elevated brain Aß levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic ß- and γ-cleavage within endosomes to generate Aß, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aß levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and ß C-terminal APP fragments (CTFs), and in the steady-state Aß levels in the brain interstitial fluid. In aged mice, total Aß levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and ß-CTFs, and attenuated Aß generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aß generation. Activation of TFEB in neurons is an effective strategy to attenuate Aß generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT: A key driver for AD pathogenesis is the net balance between production and clearance of Aß, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aß production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aß levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aß production and release. Additional studies are needed to explore the therapeutic potential of this approach.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Placa Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisosomas/genética , Lisosomas/patología , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Mutación/genética , Neuroblastoma/patología , Neuronas/patología , Placa Amiloide/genética , Placa Amiloide/patología , Presenilina-1/genética
4.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511433

RESUMEN

Microglia, the parenchymal tissue macrophages in the brain, surround amyloid plaques in brains of individuals with Alzheimer's disease (AD) but are ineffective at clearing amyloid to mitigate disease progression. Recent studies in mice indicate that microglia are derived exclusively from primitive yolk sac hematopoiesis and self-renew without contribution from ontogenically distinct monocytes/macrophages of definitive adult hematopoietic origin. Using a genetic fate-mapping approach to label cells of definitive hematopoietic origin throughout life span, we discovered that circulating monocytes contribute 6% of plaque-associated macrophages in aged AD mice. Moreover, peripheral monocytes contributed to a higher fraction of macrophages in the choroid plexus, meninges, and perivascular spaces of aged AD mice versus WT control mice, indicating enrichment at potential sites for entry into the brain parenchyma. Splenectomy, which markedly reduced circulating Ly6Chi monocytes, also reduced abundance of plaque-associated macrophages of definitive hematopoietic origin, resulting in increased amyloid plaque load. Together, these results indicate that peripherally derived monocytes invade the brain parenchyma, targeting amyloid plaques to reduce plaque load.


Asunto(s)
Enfermedad de Alzheimer , Placa Amiloide , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía/metabolismo , Monocitos/metabolismo , Placa Amiloide/patología
5.
Neuron ; 98(2): 297-305.e6, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29606579

RESUMEN

Systems-level organization in spontaneous infra-slow (<0.1Hz) brain activity, measured using blood oxygen signals in fMRI and optical imaging, has become a major theme in the study of neural function in both humans and animal models. Yet the neurophysiological basis of infra-slow activity (ISA) remains unresolved. In particular, is ISA a distinct physiological process, or is it a low-frequency analog of faster neural activity? Here, using whole-cortex calcium/hemoglobin imaging in mice, we show that ISA in each of these modalities travels through the cortex along stereotypical spatiotemporal trajectories that are state dependent (wake versus anesthesia) and distinct from trajectories in delta (1-4 Hz) activity. Moreover, mouse laminar electrophysiology reveals that ISA travels through specific cortical layers and is organized into unique cross-laminar temporal dynamics that are different from higher frequency local field potential activity. These findings suggest that ISA is a distinct neurophysiological process that is reflected in fMRI blood oxygen signals.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Vigilia/fisiología , Anestesia/métodos , Animales , Encéfalo/efectos de los fármacos , Mapeo Encefálico/métodos , Ondas Encefálicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Tiempo , Vigilia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA