Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Small ; : e2400876, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429239

RESUMEN

Lithium-rich, cobalt-free oxides are promising potential positive electrode materials for lithium-ion batteries because of their high energy density, lower cost, and reduced environmental and ethical concerns. However, their commercial breakthrough is hindered because of their subpar electrochemical stability. This work studies the effect of aluminum doping on Li1.26 Ni0.15 Mn0.61 O2 as a lithium-rich, cobalt-free layered oxide. Al doping suppresses voltage fade and improves the capacity retention from 46% for Li1.26 Ni0.15 Mn0.61 O2 to 67% for Li1.26 Ni0.15 Mn0.56 Al0.05 O2 after 250 cycles at 0.2 C. The undoped material has a monoclinic Li2 MnO3 -type structure with spinel on the particle edges. In contrast, Al-doped materials (Li1.26 Ni0.15 Mn0.61-x Alx O2 ) consist of a more stable rhombohedral phase at the particle edges, with a monoclinic phase core. For this core-shell structure, the formation of Mn3+ is suppressed along with the material's decomposition to a disordered spinel, and the amount of the rhombohedral phase content increases during galvanostatic cycling. Whereas previous studies generally provided qualitative insight into the degradation mechanisms during electrochemical cycling, this work provides quantitative information on the stabilizing effect of the rhombohedral shell in the doped sample. As such, this study provides fundamental insight into the mechanisms through which Al doping increases the electrochemical stability of lithium-rich cobalt-free layered oxides.

2.
Macromol Rapid Commun ; 39(14): e1800086, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29682847

RESUMEN

Push-pull-type conjugated polymers applied in organic electronics do not always contain a perfect alternation of donor and acceptor building blocks. Misscouplings can occur, which have a noticeable effect on the device performance. In this work, the influence of homocoupling on the optoelectronic properties and photovoltaic performance of PDTSQxff polymers is investigated, with a specific focus on the quinoxaline acceptor moieties. A homocoupled biquinoxaline segment is intentionally inserted in specific ratios during the polymerization. These homocoupled units cause a gradually blue-shifted absorption, while the highest occupied molecular orbital energy levels decrease only significantly upon the presence of 75-100% of homocouplings. Density functional theory calculations show that the homocoupled acceptor unit generates a twist in the polymer backbone, which leads to a decreased conjugation length and a reduced aggregation tendency. The virtually defect-free PDTSQxff affords a solar cell efficiency of 5.4%, which only decreases substantially upon incorporating a homocoupling degree over 50%.


Asunto(s)
Polímeros/química , Quinina/química , Energía Solar , Polimerizacion , Polímeros/síntesis química
3.
Nanomedicine ; 13(5): 1663-1671, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28366819

RESUMEN

A major conceptual breakthrough in cell signaling has been the finding of EV as new biomarker shuttles in body fluids. Now, one of the major challenges in using these nanometer-sized biological entities as diagnostic marker is the development of translational methodologies to profile them. SPR offers a promising label-free and real time platform with a high potential for biomarker detection. Therefore, we aimed to develop a uniform SPR methodology to detect specific surface markers on EV derived from patient with CHD. EVs having an approximate size range between 30 and 100 nm (~48.5%) and 100-300 nm (~51.5%) were successfully isolated. The biomarker profile of EV was verified using immunogold labeling, ELISA and SPR. Using SPR, we demonstrated an increased binding of EV derived from patients with CHD to anti-ICAM-1 antibodies as compared to EV from healthy donors. Our current findings open up novel opportunities for in-depth and label-free investigation of EV.


Asunto(s)
Biomarcadores , Células Endoteliales , Vesículas Extracelulares , Resonancia por Plasmón de Superficie , Enfermedad Coronaria , Humanos , Inflamación , Nanotecnología/métodos
4.
Nano Lett ; 16(5): 3173-8, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27104759

RESUMEN

Although adverse health effects of carbon black (CB) exposure are generally accepted, a direct, label-free approach for detecting CB particles in fluids and at the cellular level is still lacking. Here, we report nonincandescence related white-light (WL) generation by dry and suspended carbon black particles under illumination with femtosecond (fs) pulsed near-infrared light as a powerful tool for the detection of these carbonaceous materials. This observation is done for four different CB species with diameters ranging from 13 to 500 nm, suggesting this WL emission under fs near-infrared illumination is a general property of CB particles. As the emitted radiation spreads over the whole visible spectrum, detection is straightforward and flexible. The unique property of the described WL emission allows optical detection and unequivocal localization of CB particles in fluids and in cellular environments while simultaneously colocalizing different cellular components using various specific fluorophores as shown here using human lung fibroblasts. The experiments are performed on a typical multiphoton laser-scanning microscopy platform, widely available in research laboratories.

5.
Nanotechnology ; 26(6): 065201, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25597282

RESUMEN

Here we report the fabrication of nanofibre-based organic phototransistors (OPTs) using preformed poly(3-hexylthiophene) (P3HT) nanofibres. OPT performance is analysed based on two important parameters: photoresponsivity R and photosensitivity P. Before testing the devices as OPTs, the normal organic field-effect transistor (OFET) operation is characterized, revealing a surface-coverage-dependent performance. With R reaching 250 A W(-1) in the on-state (V(GS) = -40 V) and P reaching 6.8 × 10(3) in the off-state (V(GS) = 10 V) under white light illumination (I(inc) = 0.91 mW cm(-2)), the best nanofibre-based OPTs outperform the OPTs fabricated from a solution of P3HT in chlorobenzene, in which no preformed fibres are present. The better performance is attributed to an increase in active layer crystallinity, a better layer connectivity and an improved edge-on orientation of the thiophene rings along the polymer backbone, resulting in a longer exciton diffusion length and enhanced charge carrier mobility, linked to a decreased interchain coupling energy. In addition, the increased order in the active layer crystallinity induces a better spectral overlap between the white light emission spectrum and the active layer absorption spectrum, and the absorption of incident light is maximised by the favourable parallel orientation of the polymer chains with respect to the OPT substrate. Combining both leads to an increase in the overall light absorption. In comparison with previously reported solution-processed organic OPTs, it is shown here that no special dielectric surface treatment or post-deposition treatment of the active device layer is needed to obtain high OPT performance. Finally, it is also shown that, inherent to an intrinsic gate-tuneable gain mechanism, changing the gate potential results in a variation of R over at least five orders of magnitude. As such, it is shown that R can be adjusted according to the incident light intensity.

6.
Phys Chem Chem Phys ; 17(15): 9619-23, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25779759

RESUMEN

Lead phthalocyanine (PbPc) thin films of 5 and 50 nm have been deposited on hydrogen and oxygen terminated single crystal diamond (SCD) using organic molecular beam deposition. Atomic force microscopy and X-ray diffraction (XRD) studies showed that PbPc grown on the hydrogen terminated SCD forms layers with a high degree of crystallinity, dominated by the monoclinic (320) orientation parallel to the diamond surface. The oxygen terminated diamond led to a randomly oriented PbPc film. Absorption and photocurrent measurements indicated the presence of both polymorphs of PbPc, however, the ratio differed depending on the termination of the SCD. Finally, polarized Raman spectroscopy was used to determine the orientation of the molecules of the thin film. The results confirmed the random orientation on the O-terminated diamond. On SCD:H, the PbPc molecules are lying down in accordance with the XRD results.

7.
Polymers (Basel) ; 16(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000717

RESUMEN

Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.

8.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904422

RESUMEN

Biobased and biodegradable polyhydroxyalkanoates (PHAs) are currently gaining momentum. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) polymer has a useful processing window for extrusion and injection molding of packaging, agricultural and fishery applications with required flexibility. Processing PHBHHx into fibers using electrospinning or centrifugal fiber spinning (CFS) can further broaden the application area, although CFS remains rather unexplored. In this study, PHBHHx fibers are centrifugally spun from 4-12 wt.% polymer/chloroform solutions. Beads and beads-on-a-string (BOAS) fibrous structures with an average diameter (ϕav) between 0.5 and 1.6 µm form at 4-8 wt.% polymer concentrations, while more continuous fibers (ϕav = 3.6-4.6 µm) with few beads form at 10-12 wt.% polymer concentrations. This change is correlated with increased solution viscosity and enhanced mechanical properties of the fiber mats (strength, stiffness and elongation values range between 1.2-9.4 MPa, 11-93 MPa, and 102-188%, respectively), though the crystallinity degree of the fibers remains constant (33.0-34.3%). In addition, PHBHHx fibers are shown to anneal at 160 °C in a hot press into 10-20 µm compact top-layers on PHBHHx film substrates. We conclude that CFS is a promising novel processing technique for the production of PHBHHx fibers with tunable morphology and properties. Subsequent thermal post-processing as a barrier or active substrate top-layer offers new application potential.

9.
RSC Adv ; 13(47): 33146-33158, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37954421

RESUMEN

LNMO (LiNi0.5Mn1.5O4-δ) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 µm LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in Rct values as high as 1247 Ω (after 1000 cycles) for bare LNMO, against 216 Ω for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.

10.
Chemphyschem ; 13(11): 2777-83, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22639234

RESUMEN

ZnO nanorod arrays are a very eligible option as electron acceptor material in hybrid solar cells, owing to their favorable electrical properties and abundance of available, easy, and low-cost synthesis methods. To become truly effective in this field, a major prerequisite is the ability to tune the nanorod dimensions towards optimal compatibility with electron-donating absorber materials. In this work, a water-based seeding and growth procedure is used to synthesize ZnO nanorods. The nanorod diameter is tuned either by modifying the zinc concentration of the seeding solution or by changing the concentration of the hydrothermal growth solution. The consequences of this morphological tailoring in the performance of hybrid solar cells are investigated, which leads to a new record efficiency of 0.82 % for hydrothermally grown ZnO nanorods of size 300 nm in combination with poly(3-hexylthiophene-2,5-diyl) (P3HT). This improvement is attributed to a combined effect of nanorod diameter and orientation, and possibly to a better alignment of the P3HT backbone resulting in improved charge transport.

11.
ACS Appl Mater Interfaces ; 14(24): 27922-27931, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687012

RESUMEN

Volatile A-cation halide (AX) additives such as formamidinium chloride and methylammonium chloride have been widely employed for high-efficiency perovskite solar cells (PSCs). However, it remains unstudied how they influence the perovskite film stoichiometry and the solar cell performance and operational stability. Hereby, our work shows that over annealing of formamidinium chloride-containing perovskite films leads to a Pb-rich surface, resulting in a high initial efficiency, which however decays during maximum power point tracking (MPPT). On the contrary, perovskite films obtained by a shorter annealing time at the same temperature provide good stability during MPPT but a lower initial efficiency. Thus, we deduce that an optimal annealing is vital for both high efficiency and operational stability, which is then confirmed in the case where methylammonium chloride additive is used. With optimized perovskite annealing conditions, we demonstrate efficient and stable p-i-n PSCs that show a best power conversion efficiency of 20.7% and remain 90% of the initial performance after a 200 h MPPT at 60 °C under simulated 1 sun illumination with high UV content. Our work presents a comprehensive understanding on how volatile AX impacts perovskite film stoichiometry and its correlation to the device performance and operational stability, providing a new guideline for fabricating high-efficiency and operationally stable PSCs.

12.
Magn Reson Chem ; 49(5): 242-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21491481

RESUMEN

PCBM or [6,6]-phenyl-C(61)-butyric acid methyl ester is nowadays still one of the most successful electron acceptors for plastic bulk heterojunction (BHJ) photovoltaic devices. In this study, a set of complementary techniques, i.e. solid-state NMR, XRD and DSC, is proposed as a fast and sensitive tool to screen the morphology of PCBM specimens with different preparation histories. Based on proton NMR relaxation decay time values, an interval can be derived that situates the average crystal dimensions and which can further be refined on the basis of XRD patterns and DSC thermograms.

13.
iScience ; 24(12): 103496, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34934918

RESUMEN

Driven by expanding interest in battery storage solutions and the success story of lithium-ion batteries, the research for the discovery and optimization of new battery materials and concepts is at peak. The generation of experimental (dis)charge data using coin cells is fast and feasible and proves to be a favorite practice in the battery research labs. The quantitative interpretation of the data, however, is not trivial and decelerates the process of screening and optimization of electrode materials and recipes. Here, we introduce the concept of polarographic map and demonstrate how it can be leveraged to quantify the contribution of different non-equilibrium phenomena to the performance limitation and total polarization of a lithium-ion cell. We showcase the accuracy and diagnostic power of this approach by preparing and analyzing the electrochemical performance of 54 sets of LiNixMnyCo1-x-yO2 electrodes with different formulations and designs discharged in a range of 0.2C-5C.

14.
Inorg Chem ; 49(10): 4471-7, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20405962

RESUMEN

In this work, the reaction mechanism used in the preparation of fluorine-free superconducting YBa(2)Cu(3)O(7-delta) (YBCO) was investigated. To determine which precursor interactions are dominant, a comprehensive thermal analysis (thermogravimetric analysis-differential thermal analysis) study was performed. The results suggest that a three step reaction mechanism, with a predominant role for BaCO(3), is responsible for the conversion of the initial state to the superconducting phase. In the presence of CuO, the decarboxylation of BaCO(3) is kinetically favored with the formation of BaCuO(2) as a result. BaCuO(2) reacts with the remaining CuO to form a liquid which ultimately reacts with Y(2)O(3) in a last step to form YBCO. High temperature X-ray diffraction experiments confirm that these results are applicable for thin film synthesis prepared from an aqueous fluorine-free sol-gel precursor.

15.
Nanomaterials (Basel) ; 10(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392730

RESUMEN

The field of printed electronics is rapidly evolving, producing low cost applications with enhanced performances with transparent, stretchable properties and higher reliability. Due to the versatility of printed electronics, industry can consider the implementation of electronics in a way which was never possible before. However, a post-processing step to achieve conductive structures-known as sintering-limits the production ease and speed of printed electronics. This study addresses the issues related to fast sintering without scarifying important properties such as conductivity and surface roughness. A drop-on-demand inkjet printer is employed to deposit silver nanoparticle-based inks. The post-processing time of these inks is reduced by replacing the conventional oven sintering procedure with the state-of-the-art method, named near-infrared sintering. By doing so, the post-processing time shortens from 30-60 min to 6-8 s. Furthermore, the maximum substrate temperature during sintering is reduced from 200 °C to 120 °C. Based on the results of this study, one can conclude that near-infrared sintering is a ready-to-industrialize post-processing method for the production of printed electronics, capable of sintering inks at high speed, low temperature and with low complexity. Furthermore, it becomes clear that ink optimization plays an important role in processing inkjet printable inks, especially after being near-infrared sintered.

16.
Polymers (Basel) ; 12(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291806

RESUMEN

This paper presents the formulation, inkjet printing, and vacuum forming of a conductive and stretchable polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), ink on a stretchable and transparent thermoplastic polyurethane (TPU) substrate. The formulation of the conductive and stretchable ink is achieved by combining PEDOT:PSS with additional solvents, to achieve the right inkjet properties for drop-on-demand (DoD) inkjet printing. A conductive pattern can be printed from the 21 µm orifice on a flexible and stretchable TPU substrate, with a linewidth down to 44 µm. The properties of the printed pattern, in terms of sheet resistance, morphology, transparency, impact of weather conditions, and stretching are investigated and show sheet resistances up to 45 Ohm/sq and transparencies as high as 95%, which is comparable to indium tin oxide (ITO). Moreover, in contrast to ITO, one-time stretching up to 40% can be achieved, increasing the sheet resistance up to 214 Ohm/sq only, showing the great potential of this ink for one-time stretching. Finally, as a proof of this one-time stretching, the printed samples are vacuum formed around a 3D object, still showing sufficient conductivity to be applied as a capacitive touch sensor.

17.
Front Microbiol ; 11: 598507, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519737

RESUMEN

The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg-1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l-1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.

18.
Nanotechnology ; 20(5): 055608, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19417355

RESUMEN

In this paper a 2(8-4) fractional factorial design of experiments is applied to identify the important parameters that affect the average diameter of ZnO rods, synthesized by means of a hydrothermal procedure. A water-based Zn(2+) precursor is used for the formation of one-dimensional ZnO particles, without the presence of an organic additive. Results indicate that, at the investigated levels, four of the parameters have a significant effect on the mean diameter. These are the temperature, the heating rate, stirring and an ultrasonic pre-treatment of the precursor solution. Experiments carried out with zinc acetate and zinc chloride do not show a significant difference in rod diameter. Other parameters that do not show a significant effect are the concentration of Zn(2+), the molar ratio between the hydroxyl and the zinc ions, and the reaction time. Interactions are observed between stirring and an ultrasonic pre-treatment and between the zinc concentration and the OH:Zn ratio. By fixing the significant factors at their optimal value it is possible to decrease the mean diameter. The particles are characterized by means of x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Asunto(s)
Coloides/química , Modelos Químicos , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Agua/química , Óxido de Zinc/química , Simulación por Computador , Cristalización/métodos , Calor , Sustancias Macromoleculares/química , Ensayo de Materiales , Modelos Moleculares , Modelos Estadísticos , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
19.
3 Biotech ; 9(3): 74, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30800585

RESUMEN

We report here on a high-quality draft genome sequence of Ochrobactrum haematophilum strain P6BS-III (DSM 106071), a Gram negative, non-sporulating bacterium isolated from a pastureland (Buenos Aires province, Argentina) which had been chronically exposed to the herbicide glyphosate. The genome of 5.25 Mb with a DNA G+C content of 56.63% size was estimated to contain 5,291 protein coding genes and 57 RNA genes. Genome analysis revealed the presence of the phn operon, which is involved in the phosphonate degradation pathway, and a class II 5-enolpyruvylshikimate-3-phosphate synthase (EPSP) that confers tolerance to glyphosate. Genes related to plant growth promotion traits are also present, and include genes for phosphorus metabolism, calcium phosphate and phytate solubilization, siderophore production, organic acid biosynthesis and indole acetic acid (IAA) production.

20.
Chem Commun (Camb) ; 55(17): 2481-2484, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30734783

RESUMEN

This study broadens the family of 2D layered perovskites by demonstrating that it is possible to self-assemble organic charge-transfer complexes in their organic layer. Organic charge-transfer complexes, formed by combining charge-donating and charge-accepting molecules, are a diverse class of materials that can possess exceptional optical and electronic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA