Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 74(6): 1278-1290.e9, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31031083

RESUMEN

7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.


Asunto(s)
Guanosina/análogos & derivados , Metiltransferasas/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN , Células A549 , Secuencia de Bases , Bioensayo , Células CACO-2 , Movimiento Celular , Proliferación Celular , Guanosina/metabolismo , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , MicroARNs/metabolismo , Conformación de Ácido Nucleico
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928049

RESUMEN

The current hypothesis on the pathophysiology of multiple sclerosis (MS) suggests the involvement of both inflammatory and neurodegenerative mechanisms. Disease Modifying Therapies (DMTs) effectively decrease relapse rates, thus reducing relapse-associated disability in people with MS. In some patients, disability progression, however, is not solely linked to new lesions and clinical relapses but can manifest independently. Progression Independent of Relapse Activity (PIRA) significantly contributes to long-term disability, stressing the urge to unveil biomarkers to forecast disease progression. Twenty-five adult patients with relapsing-remitting multiple sclerosis (RRMS) were enrolled in a cohort study, according to the latest McDonald criteria, and tested before and after high-efficacy Disease Modifying Therapies (DMTs) (6-24 months). Through Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells. Multivariate logistic and linear models with interactions were generated. Robustness was assessed by randomization tests in R. A subset of miRNAs, correlated with PIRA, and the Expanded Disability Status Scale (EDSS), was selected. To refine the patient stratification connected to the disease trajectory, we computed a robust logistic classification model derived from baseline miRNA expression to predict PIRA status (AUC = 0.971). We built an optimal multilinear model by selecting four other miRNA predictors to describe EDSS changes compared to baseline. Multivariate modeling offers a promising avenue to uncover potential biomarkers essential for accurate prediction of disability progression in early MS stages. These models can provide valuable insights into developing personalized and effective treatment strategies.


Asunto(s)
Progresión de la Enfermedad , MicroARNs , Esclerosis Múltiple Recurrente-Remitente , Humanos , MicroARNs/genética , Masculino , Femenino , Adulto , Esclerosis Múltiple Recurrente-Remitente/genética , Persona de Mediana Edad , Biomarcadores , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Leucocitos Mononucleares/metabolismo , Estudios de Cohortes , Recurrencia , Perfilación de la Expresión Génica/métodos
3.
BMC Med Inform Decis Mak ; 23(1): 153, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553569

RESUMEN

BACKGROUND: The recent advances in biotechnology and computer science have led to an ever-increasing availability of public biomedical data distributed in large databases worldwide. However, these data collections are far from being "standardized" so to be harmonized or even integrated, making it impossible to fully exploit the latest machine learning technologies for the analysis of data themselves. Hence, facing this huge flow of biomedical data is a challenging task for researchers and clinicians due to their complexity and high heterogeneity. This is the case of neurodegenerative diseases and the Alzheimer's Disease (AD) in whose context specialized data collections such as the one by the Alzheimer's Disease Neuroimaging Initiative (ADNI) are maintained. METHODS: Ontologies are controlled vocabularies that allow the semantics of data and their relationships in a given domain to be represented. They are often exploited to aid knowledge and data management in healthcare research. Computational Ontologies are the result of the combination of data management systems and traditional ontologies. Our approach is i) to define a computational ontology representing a logic-based formal conceptual model of the ADNI data collection and ii) to provide a means for populating the ontology with the actual data in the Alzheimer Disease Neuroimaging Initiative (ADNI). These two components make it possible to semantically query the ADNI database in order to support data extraction in a more intuitive manner. RESULTS: We developed: i) a detailed computational ontology for clinical multimodal datasets from the ADNI repository in order to simplify the access to these data; ii) a means for populating this ontology with the actual ADNI data. Such computational ontology immediately makes it possible to facilitate complex queries to the ADNI files, obtaining new diagnostic knowledge about Alzheimer's disease. CONCLUSIONS: The proposed ontology will improve the access to the ADNI dataset, allowing queries to extract multivariate datasets to perform multidimensional and longitudinal statistical analyses. Moreover, the proposed ontology can be a candidate for supporting the design and implementation of new information systems for the collection and management of AD data and metadata, and for being a reference point for harmonizing or integrating data residing in different sources.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Semántica , Manejo de Datos
4.
Alzheimers Dement ; 18(10): 1868-1879, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34936194

RESUMEN

INTRODUCTION: The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests. METHODS: We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients. RESULTS: The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis. DISCUSSION: This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
5.
Nat Methods ; 14(3): 279-282, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28092690

RESUMEN

The ability to selectively interfere with post-translationally modified proteins would have many biological and therapeutic applications. However, post-translational modifications cannot be selectively targeted by nucleic-acid-based interference approaches. Here we describe post-translational intracellular silencing antibody technology (PISA), a method for selecting intrabodies against post-translationally modified proteins. We demonstrate our method by generating intrabodies against native acetylated proteins and showing functional interference in living cells.


Asunto(s)
Anticuerpos/inmunología , Integrasa de VIH/inmunología , Integrasa de VIH/metabolismo , Histonas/inmunología , Histonas/metabolismo , Procesamiento Proteico-Postraduccional/inmunología , Acetilación , Humanos
6.
Glia ; 66(7): 1395-1416, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29473218

RESUMEN

Microglia are the sentinels of the brain but a clear understanding of the factors that modulate their activation in physiological and pathological conditions is still lacking. Here we demonstrate that Nerve Growth Factor (NGF) acts on microglia by steering them toward a neuroprotective and anti-inflammatory phenotype. We show that microglial cells express functional NGF receptors in vitro and ex vivo. Our transcriptomic analysis reveals how, in primary microglia, NGF treatment leads to a modulation of motility, phagocytosis and degradation pathways. At the functional level, NGF induces an increase in membrane dynamics and macropinocytosis and, in vivo, it activates an outward rectifying current that appears to modulate glutamatergic neurotransmission in nearby neurons. Since microglia are supposed to be a major player in Aß peptide clearance in the brain, we tested the effects of NGF on its phagocytosis. NGF was shown to promote TrkA-mediated engulfment of Aß by microglia, and to enhance its degradation. Additionally, the proinflammatory activation induced by Aß treatment is counteracted by the concomitant administration of NGF. Moreover, by acting specifically on microglia, NGF protects neurons from the Aß-induced loss of dendritic spines and inhibition of long term potentiation. Finally, in an ex-vivo setup of acute brain slices, we observed a similar increase in Aß engulfment by microglial cells under the influence of NGF. Our work substantiates a role for NGF in the regulation of microglial homeostatic activities and points toward this neurotrophin as a neuroprotective agent in Aß accumulation pathologies, via its anti-inflammatory activity on microglia.


Asunto(s)
Microglía/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuroprotección/fisiología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Factor de Crecimiento Nervioso/administración & dosificación , Neuronas/citología , Neuronas/metabolismo , Fagocitosis/fisiología , Receptores de Factor de Crecimiento Nervioso/antagonistas & inhibidores , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos , Transcriptoma
7.
Mol Cancer ; 16(1): 55, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270148

RESUMEN

BACKGROUND: Many tumor-related factors have shown the ability to affect metabolic pathways by paving the way for cancer-specific metabolic features. Here, we investigate the regulation of mTORC1 by MDM4, a p53-inhibitor with oncogenic or anti-survival activities depending on cell growth conditions. METHOD: MDM4-mTOR relationship was analysed through experiments of overexpression or silencing of endogenous proteins in cell culture and using purified proteins in vitro. Data were further confirmed in vivo using a transgenic mouse model overexpressing MDM4. Additionally, the Cancer Genome Atlas (TCGA) database (N = 356) was adopted to analyze the correlation between MDM4 and mTOR levels and 3D cultures were used to analyse the p53-independent activity of MDM4. RESULTS: Following nutrient deprivation, MDM4 impairs mTORC1 activity by binding and inhibiting the kinase mTOR, and contributing to maintain the cytosolic inactive pool of mTORC1. This function is independent of p53. Inhibition of mTORC1 by MDM4 results in reduced phosphorylation of the mTOR downstream target p70S6K1 both in vitro and in vivo in a MDM4-transgenic mouse. Consistently, MDM4 reduces cell size and proliferation, two features controlled by p70S6K1, and, importantly, inhibits mTORC1-mediated mammosphere formation. Noteworthy, MDM4 transcript levels are significantly reduced in breast tumors characterized by high mTOR levels. CONCLUSION: Overall, these data identify MDM4 as a nutrient-sensor able to inhibit mTORC1 and highlight its metabolism-related tumor-suppressing function.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal
8.
Headache ; 57(7): 1136-1144, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28573794

RESUMEN

OBJECTIVE: To search for differences in prevalence of a CACNA1E variant between migraine without aura, various phenotypes of migraine with aura, and healthy controls. BACKGROUND: Familial hemiplegic migraine type 1 (FHM1) is associated with mutations in the CACNA1A gene coding for the alpha 1A (Cav 2.1) pore-forming subunit of P/Q voltage-dependent Ca2+ channels. These mutations are not found in the common forms of migraine with or without aura. The alpha 1E subunit (Cav 2.3) is the counterpart of Cav 2.1 in R-type Ca2+ channels, has different functional properties, and is encoded by the CACNA1E gene. METHODS: First, we performed a total exon sequencing of the CACNA1E gene in three probands selected because they had no abnormalities in the three FHM genes. In a patient suffering from basilar-type migraine, we identified a single nucleotide polymorphism (SNP) in exon 20 of the CACNA1E gene (Asp859Glu - rs35737760; Minor Allele Frequency 0.2241) hitherto not studied in migraine. In a second step, we determined its occurrence in four groups by direct sequencing on blood genomic DNA: migraine patients without aura (N = 24), with typical aura (N = 55), complex neurological auras (N = 19; hemiplegic aura: N = 15; brain stem aura: N = 4), and healthy controls (N = 102). RESULTS: The Asp859Glu - rs35737760 SNP of the CACNA1E gene was present in 12.7% of control subjects and in 20.4% of the total migraine group. In the migraine group it was significantly over-represented in patients with complex neurological auras (42.1%), OR 4.98 (95% CI: 1.69-14.67, uncorrected P = .005, Bonferroni P = .030, 2-tailed Fisher's exact test). There was no significant difference between migraine with typical aura (10.9%) and controls. CONCLUSIONS: We identified a polymorphism in exon 20 of the CACNA1E gene (Asp859Glu - rs35737760) that is more prevalent in hemiplegic and brain stem aura migraine. This missense variant causes a change from aspartate to glutamate at position 859 of the Cav 2.3 protein and might modulate the function of R-type Ca2+ channels. It could thus be relevant for migraine with complex neurological aura, although this remains to be proven.


Asunto(s)
Canales de Calcio Tipo R/genética , Proteínas de Transporte de Catión/genética , Ataxia Cerebelosa/genética , Predisposición Genética a la Enfermedad/genética , Trastornos Migrañosos/genética , Polimorfismo de Nucleótido Simple/genética , Ácido Aspártico/genética , Estudios de Casos y Controles , Análisis Mutacional de ADN , Exones/genética , Femenino , Frecuencia de los Genes , Ácido Glutámico/genética , Humanos , Masculino , Trastornos Migrañosos/clasificación , Fenotipo , Estudios Retrospectivos , Estadísticas no Paramétricas
9.
BMC Neurosci ; 16: 28, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25925689

RESUMEN

BACKGROUND: Many approaches exist to integrate protein-protein interaction data with other sources of information, most notably with gene co-expression data, to obtain information on network dynamics. It is of interest to look at groups of interacting gene products that form a protein complex. We were interested in applying new tools to the characterization of pathogenesis and dynamic events of an Alzheimer's-like neurodegenerative model, the AD11 mice, expressing an anti-NGF monoclonal antibody. The goal was to quantify the impact of neurodegeneration on protein complexes, by measuring the correlation between gene expression data by different metrics. RESULTS: Data were extracted from the gene expression profile of AD11 brain, obtained by Agilent microarray, at 1, 3, 6, 15 months of age. For genes coding proteins in complexes, the correlation matrix of pairwise expression was computed. The dynamics between correlation matrices at different time points was evaluated: paired T-test between average correlation levels and a normalized Euclidean distance with z-score. We unveiled a differential wiring of interactions in a set of complexes, whose network structure discriminates between transgenic and control mice. Furthermore, we analyzed the dynamics of gene expression values, by looking at changes in gene-to-gene correlation over time and identified those complexes that exhibit a different timedependent behaviour between transgenic and controls. The most significant changes in correlation dynamics are concentrated in the early stage of disease, with higher correlation in AD11 mice compared to controls. Many complexes go through dynamic changes over time, showing the role of the dysfunctional immunoproteasome, as early neurodegenerative disease event. Furthermore, this analysis shows key events in the neurodegeneration process of the AD11 model, by identifying significant differences in co-expression values of other complexes, such as parvulin complex, with a role in protein misfolding and proteostasis, and of complexes involved in transcriptional mechanisms. CONCLUSIONS: We have proposed a novel approach to analyze the network structure of protein complexes, by two different measures to evaluate the dynamics of gene-gene correlation matrices from gene expression profiles. The methodology was able to investigate the re-organization of interactions within protein complexes in the AD11 model of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Envejecimiento/metabolismo , Animales , Bases de Datos de Proteínas , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica/métodos , Ratones Transgénicos , Análisis por Micromatrices , Factores de Tiempo
10.
BMC Neurosci ; 15: 48, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24713110

RESUMEN

BACKGROUND: Growing evidence shows that, in vivo, the precursor of Nerve Growth Factor (NGF), proNGF, displays biological activities different from those of its mature NGF counterpart, mediated by distinct, and somewhat complementary, receptor binding properties. NGF and proNGF induce distinct transcriptional signatures in target cells, highlighting their different bioactivities. In vivo, proNGF and mature NGF coexist. It was proposed that the relative proNGF/NGF ratio is important for their biological outcomes, especially in pathological conditions, since proNGF, the principal form of NGF in Central Nervous System (CNS), is increased in Alzheimer's disease brains. These observations raise a relevant question: does proNGF, in the presence of NGF, influence the NGF transcriptional response and viceversa? In order to understand the specific proNGF effect on NGF activity, depending on the relative proNGF/NGF concentration, we investigated whether proNGF affects the pattern of well-known NGF-regulated mRNAs. RESULTS: To test any influence of proNGF on pure NGF expression fingerprinting, the expression level of a set of candidate genes was analysed by qReal-Time PCR in rat adrenal pheochromocytoma cell line PC12, treated with a mixture of NGF and proNGF recombinant proteins, in different stoichiometric ratios. These candidates were selected amongst a set of genes well-known as being rapidly induced by NGF treatment. We found that, when PC12 cells are treated with proNGF/NGF mixtures, a unique pattern of gene expression, which does not overlap with that deriving from treatment with either proNGF or NGF alone, is induced. The specific effect is also dependent on the stoichiometric composition of the mixture. The proNGF/NGF equimolar mixture seems to partially neutralize the specific effects of the proNGF or NGF individual treatments, showing a weaker overall response, compared to the individual contributions of NGF and proNGF alone. CONCLUSIONS: Using gene expression as a functional read-out, our data demonstrate that the relative availability of NGF and proNGF in vivo might modulate the biological outcome of these ligands.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Animales , Células PC12 , Ratas
11.
Cell Death Discov ; 10(1): 149, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514650

RESUMEN

Breast Cancer (BC) is one of the most common tumours, and is known for its ability to develop resistance to chemotherapeutic treatments. Autophagy has been linked to chemotherapeutic response in several types of cancer, highlighting its contribution to this process. However, the role of mitophagy, a selective form of autophagy responsible for damaged mitochondria degradation, in the response to therapies in BC is still unclear. In order to address this point, we analysed the role of mitophagy in the treatment of the most common anticancer drug, doxorubicin (DXR), in different models of BC, such as a luminal A subtype-BC cell line MCF7 cells, cultured in 2-Dimension (2D) or in 3-Dimension (3D), and the triple negative BC (TNBC) cell line MDA-MB-231. Through a microarray analysis, we identified a relationship between mitophagy gene expressions related to the canonical PINK1/Parkin-mediated pathway and DXR treatment in BC cells. Afterwards, we demonstrated that the PINK1/Parkin-dependent mitophagy is indeed induced following DXR treatment and that exogenous expression of a small non-coding RNA, the miRNA-218-5p, known to target mRNA of Parkin, was sufficient to inhibit the DXR-mediated mitophagy in MCF7 and in MDA-MB-231 cells, thereby increasing their sensitivity to DXR. Considering the current challenges involved in BC refractory to treatment, our work could provide a promising approach to prevent tumour resistance and recurrence, potentially leading to the development of an innovative approach to combine mitophagy inhibition and chemotherapy.

12.
Front Cell Dev Biol ; 11: 1165125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143894

RESUMEN

Nerve growth factor (NGF) is critical for neuronal physiology during development and adulthood. Despite the well-recognized effect of NGF on neurons, less is known about whether NGF can actually affect other cell types in the central nervous system (CNS). In this work, we show that astrocytes are susceptible to changes in ambient levels of NGF. First, we observe that interfering with NGF signaling in vivo via the constitutive expression of an antiNGF antibody induces astrocytic atrophy. A similar asthenic phenotype is encountered in an uncleavable proNGF transgenic mouse model (TgproNGF#72), effectively increasing the brain proNGF levels. To examine whether this effect on astrocytes is cell-autonomous, we cultured wild-type primary astrocytes in the presence of antiNGF antibodies, uncovering that a short incubation period is sufficient to potently and rapidly trigger calcium oscillations. Acute induction of calcium oscillations by antiNGF antibodies is followed by progressive morphological changes similar to those observed in antiNGF AD11 mice. Conversely, incubation with mature NGF has no effect on either calcium activity nor on astrocytic morphology. At longer timescales, transcriptomic analysis revealed that NGF-deprived astrocytes acquire a proinflammatory profile. In particular, antiNGF-treated astrocytes show upregulation of neurotoxic transcripts and downregulation of neuroprotective mRNAs. Consistent with that data, culturing wild-type neurons in the presence of NGF-deprived astrocytes leads to neuronal cell death. Finally, we report that in both awake and anesthetized mice, astrocytes in layer I of the motor cortex respond with an increase in calcium activity to acute NGF inhibition using either NGF-neutralizing antibodies or a TrkA-Fc NGF scavenger. Moreover, in vivo calcium imaging in the cortex of the 5xFAD neurodegeneration mouse model shows an increased level of spontaneous calcium activity in astrocytes, which is significantly reduced after acute administration of NGF. In conclusion, we unveil a novel neurotoxic mechanism driven by astrocytes, triggered by their sensing and reacting to changes in the levels of ambient NGF.

13.
Neurology ; 101(19): e1933-e1938, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37652704

RESUMEN

OBJECTIVES: Different pathophysiologic mechanisms, especially involving astrocytes, could contribute to tuberous sclerosis complex (TSC). We assessed neurodegeneration and astrocytopathy plasma biomarkers in adult patients with TSC to define TSC biomarker profile and investigate clinical-radiologic correlations. METHODS: Patients with TSC aged 15 years or older followed at Policlinico "Umberto I" of Rome were consecutively enrolled (July 2021-June 2022). The plasma levels of the following biomarkers were compared between patients and age/sex-matched healthy controls (HCs): tTau, pTau181, Abeta40, Abeta42, neurofilament light chain, and glial fibrillary acid protein (GFAP). RESULTS: Thirty-one patients (20 females/11 males; median age 30 years, interquartile range 24-47) and 38 HCs were enrolled. Only GFAP was significantly higher in the whole TSC population than in HCs (132.71 [86.14-231.06] vs 44.80 [32.87-66.76] pg/mL, p < 0.001), regardless of genotype. GFAP correlated with the disease clinical (ρ = 0.498, p = 0.005) and radiologic severity (ρ = 0.417, p = 0.001). It was significantly higher in patients with epileptic spasms (254.50 [137.54-432.96] vs 86.92 [47.09-112.76] pg/mL, p < 0.0001), moderate-severe intellectual disability (200.80 [78.40-427.6] vs 105.08 [46.80-152.58] pg/mL, p = 0.040), and autism spectrum disorder (306.26 [159.07-584.47] vs 109.34 [72.56-152.08] pg/mL, p = 0.021). DISCUSSION: Our exploratory study documented a significant increase of GFAP plasma concentration in adult patients with TSC, correlated with their neurologic severity, supporting the central role of astrocytopathy in TSC pathophysiology.


Asunto(s)
Trastorno del Espectro Autista , Esclerosis Tuberosa , Masculino , Femenino , Humanos , Adulto , Trastorno del Espectro Autista/genética , Esclerosis Tuberosa/genética , Biomarcadores , Astrocitos , Genotipo , Proteína Ácida Fibrilar de la Glía/genética
14.
Front Immunol ; 14: 1234869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152407

RESUMEN

Background and objectives: Multiple sclerosis (MS) is a chronic, progressive neurological disease characterized by early-stage neuroinflammation, neurodegeneration, and demyelination that involves a spectrum of heterogeneous clinical manifestations in terms of disease course and response to therapy. Even though several disease-modifying therapies (DMTs) are available to prevent MS-related brain damage-acting on the peripheral immune system with an indirect effect on MS lesions-individualizing therapy according to disease characteristics and prognostic factors is still an unmet need. Given that deregulated miRNAs have been proposed as diagnostic tools in neurodegenerative/neuroinflammatory diseases such as MS, we aimed to explore miRNA profiles as potential classifiers of the relapsing-remitting MS (RRMS) patients' prospects to gain a more effective DMT choice and achieve a preferential drug response. Methods: A total of 25 adult patients with RRMS were enrolled in a cohort study, according to the latest McDonald criteria before (pre-cladribine, pre-CLA; pre-ocrelizumab, pre-OCRE, time T0) and after high-efficacy DMTs, time T1, 6 months post-CLA (n = 10, 7 F and 3 M, age 39.0 ± 7.5) or post-OCRE (n = 15, 10 F and 5 M, age 40.5 ± 10.4) treatment. A total of 15 age- and sex-matched healthy control subjects (9 F and 6 M, age 36.3 ± 3.0) were also selected. By using Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells (PBMC). miRNA-target networks were obtained by miRTargetLink, and Pearson's correlation served to estimate the association between miRNAs and outcome clinical features. Results: First, the miRNA profiles of pre-CLA or pre-OCRE RRMS patients compared to healthy controls identified modulated miRNA patterns (40 and seven miRNAs, respectively). A direct comparison of the two pre-treatment groups at T0 and T1 revealed more pro-inflammatory patterns in the pre-CLA miRNA profiles. Moreover, both DMTs emerged as being capable of reverting some dysregulated miRNAs toward a protective phenotype. Both drug-dependent miRNA profiles and specific miRNAs, such as miR-199a-3p, miR-29b-3p, and miR-151a-3p, emerged as potentially involved in these drug-induced mechanisms. This enabled the selection of miRNAs correlated to clinical features and the related miRNA-mRNA network. Discussion: These data support the hypothesis of specific deregulated miRNAs as putative biomarkers in RRMS patients' stratification and DMT drug response.


Asunto(s)
MicroARNs , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Adulto , Humanos , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/genética , Cladribina , Esclerosis Múltiple/tratamiento farmacológico , Leucocitos Mononucleares , Estudios de Cohortes
15.
Brain Sci ; 12(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35741668

RESUMEN

GABA, the main inhibitory neurotransmitter in the adult brain, depolarizes and excites immature neurons because of an initially higher intracellular chloride concentration [Cl-]i due to the delayed expression of the chloride exporter KCC2 at birth. Depolarization-induced calcium rise via NMDA receptors and voltage-dependent calcium channels is instrumental in shaping neuronal circuits and in controlling the excitatory (E)/inhibitory (I) balance in selective brain areas. An E/I imbalance accounts for cognitive impairment observed in several neuropsychiatric disorders. The aim of this review is to summarize recent data on the mechanisms by which alterations of GABAergic signaling alter the E/I balance in cortical and hippocampal neurons in Alzheimer's disease (AD) and the role of cation-chloride co-transporters in this process. In particular, we discuss the NGF and AD relationship and how mice engineered to express recombinant neutralizing anti-NGF antibodies (AD11 mice), which develop a neurodegenerative pathology reminiscent of that observed in AD patients, exhibit a depolarizing action of GABA due to KCC2 impairment. Treating AD and other forms of dementia with bumetanide, a selective KCC2 antagonist, contributes to re-establishing a proper E/I balance in selective brain areas, leading to amelioration of AD symptoms and the slowing down of disease progression.

16.
Pharmaceutics ; 14(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36145575

RESUMEN

(1) Backgrond: Considering the positive effects of citicoline (CIT) in the management of some neurodegenerative diseases, the aim of this work was to develop CIT-Loaded Solid Lipid Nanoparticles (CIT-SLNs) for enhancing the therapeutic use of CIT in parkinsonian syndrome; (2) Methods: CIT-SLNs were prepared by the melt homogenization method using the self-emulsifying lipid Gelucire® 50/13 as lipid matrix. Solid-state features on CIT-SLNs were obtained with FT-IR, thermal analysis (DSC) and X-ray powder diffraction (XRPD) studies. (3) Results: CIT-SLNs showed a mean diameter of 201 nm, -2.20 mV as zeta potential and a high percentage of entrapped CIT. DSC and XRPD analyses evidenced a greater amorphous state of CIT in CIT-SLNs. On confocal microscopy, fluorescent SLNs replacing unlabeled CIT-SLNs released the dye selectively in the cytoplasm. Biological evaluation showed that pre-treatment of SH-SY5Y dopaminergic cells with CIT-SLNs (50 µM) before the addition of 40 µM 6-hydroxydopamine (6-OHDA) to mimic Parkinson's disease's degenerative pathways counteracts the cytotoxic effects induced by the neurotoxin, increasing cell viability with the consistent maintenance of both nuclear and cell morphology. In contrast, pre-treatment with CIT 50 and 60 µM or plain SLNs for 2 h followed by 6-OHDA (40 µM) did not significantly influence cell viability. (4) Conclusions: These data suggest an enhanced protection exerted by CIT-SLNs with respect to free CIT and prompt further investigation of possible molecular mechanisms that underlie this difference.

17.
J Neurosci ; 30(3): 885-93, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089897

RESUMEN

GABA, the main inhibitory transmitter in adulthood, early in postnatal development exerts a depolarizing and excitatory action. This effect, which results from a high intracellular chloride concentration ([Cl(-)](i)), promotes neuronal growth and synaptogenesis. During the second postnatal week, the developmental regulated expression of the cation-chloride cotransporter KCC2 accounts for the shift of GABA from the depolarizing to the hyperpolarizing direction. Changes in chloride homeostasis associated with high [Cl(-)](i) have been found in several neurological disorders, including temporal lobe epilepsy. Here, we report that, in adult transgenic mice engineered to express recombinant neutralizing anti-nerve growth factor antibodies (AD11 mice), GABA became depolarizing and excitatory. AD11 mice exhibit a severe deficit of the cholinergic function associated with an age-dependent progressive neurodegenerative pathology resembling that observed in Alzheimer patients. Thus, in hippocampal slices obtained from 6-month-old AD11 (but not wild-type) mice, the GABA(A) agonist isoguvacine significantly increased the firing of CA1 principal cells and, at the network level, the frequency of multiunit activity recorded with extracellular electrodes. In addition, in AD11 mice, the reversal of GABA(A)-mediated postsynaptic currents and of GABA-evoked single-channel currents were positive with respect to the resting membrane potential as estimated in perforated patch and cell attached recordings, respectively. Real-time quantitative reverse transcription-PCR and immunocytochemical experiments revealed a reduced expression of mRNA encoding for Kcc2 and of the respective protein. This novel mechanism may represent a homeostatic response that counterbalances within the hippocampal network the Alzheimer-like neurodegenerative pathology found in AD11 mice.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Neuronas/fisiología , Ácido gamma-Aminobutírico/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , Animales , Anticuerpos Neutralizantes/genética , Biofisica , Bumetanida/farmacología , Estimulación Eléctrica/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/fisiología , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Ácidos Isonicotínicos/farmacología , Ratones , Ratones Transgénicos , Factor de Crecimiento Nervioso/inmunología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Piridazinas/farmacología , Quinoxalinas/farmacología , ARN Mensajero/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Simportadores/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Ácido gamma-Aminobutírico/farmacología , Cotransportadores de K Cl
18.
J Cell Physiol ; 226(6): 1531-43, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20945374

RESUMEN

The human intestinal Caco-2 cell line has been extensively used as a model of the intestinal barrier. However, it is widely reported in literature that culture-related conditions, as well as the different Caco-2 cell lines utilized in different laboratories, often lead to problems of reproducibility making difficult to compare results. We developed a new cell-maintenance protocol in which Caco-2 cells were subcultured at 50% of confluence instead of 80% of confluence, as usually suggested. Using this new protocol, Caco-2 cells retained a higher proliferation potential resulting in a cell population, which, on reaching confluence, was able to differentiate almost synchronously, forming a more homogeneous and polarized cell monolayer, as compared to that obtained using a high cell growing density. This comparison has been done by analyzing the gene expression and the structural characteristics of the 21-days differentiated monolayers by microarrays hybridization and by confocal microscopy. We then investigated if these differences could also modify the effects of toxicants on 21-days-differentiated cells. We analyzed the 2 h-acute toxicity of CuCl(2) in terms of actin depolymerization and metallothionein 2A (MT2A) and heat shock protein 70 (HSPA1A) genes induction. Copper treatment resulted in different levels of actin depolymerization and gene expression induction in relationship with culture protocol, the low-density growing cells showing a more homogeneous and stronger response. Our results suggest that cell growing density could influence a number of morphological and physiological properties of differentiated Caco-2 cells and these effects must be taken in account when these cells are used as intestinal model.


Asunto(s)
Diferenciación Celular , Biomarcadores/metabolismo , Células CACO-2 , Recuento de Células , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Cobre/toxicidad , Enterocitos/citología , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microvellosidades/efectos de los fármacos , Microvellosidades/metabolismo , Transporte de Proteínas/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Factores de Tiempo
19.
Geroscience ; 43(2): 1039-1051, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210215

RESUMEN

The present study aimed at investigating if the main biomarkers of Alzheimer's disease (AD) neuropathology and their association with cognitive disturbances and dementia are modified by the individual's frailty status. We performed a cross-sectional analysis of data from participants with normal cognition, mild cognitive impairment (MCI), and AD dementia enrolled in the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) study. Frailty was operationalized by computing a 40-item Frailty Index (FI). The following AD biomarkers were considered and analyzed according to the participants' frailty status: CSF Aß1-42, 181P-tau, and T-tau; MRI-based hippocampus volume; cortical glucose metabolism at the FDG PET imaging; amyloid deposition at the 18F-AV-45 PET imaging. Logistic regression models, adjusted for age, sex, and education, were performed to explore the association of biomarkers with cognitive status at different FI levels. Subjects with higher FI scores had lower CSF levels of Aß1-42, hippocampus volumes at the MRI, and glucose metabolism at the FDG PET imaging, and a higher amyloid deposition at the 18F-AV-45 PET. No significant differences were observed among the two frailty groups concerning ApoE genotype, CSF T-tau, and P-tau. Increasing frailty levels were associated with a weakened relationship between dementia and 18F-AV-45 uptake and hippocampus volume and with a stronger relationship of dementia with FDG PET. Frailty contributes to the discrepancies between AD pathology and clinical manifestations and influences the association of AD pathological modifications with cognitive changes. AD and dementia should increasingly be conceived as "complex diseases of aging," determined by multiple, simultaneous, and interacting pathophysiological processes.


Asunto(s)
Enfermedad de Alzheimer , Fragilidad , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Biomarcadores , Estudios Transversales , Fragilidad/diagnóstico por imagen , Humanos , Neuroimagen
20.
Cells ; 10(2)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669304

RESUMEN

In the brain, the neurotrophin Nerve growth factor (NGF) regulates not only neuronal survival and differentiation, but also glial and microglial functions and neuroinflammation. NGF is known to regulate oligodendrogenesis, reducing myelination in the central nervous system (CNS). In this study, we found that NGF controls oligodendrogenesis by modulating the levels of miR-219a-5p, a well-known positive regulator of oligodendrocyte differentiation. We exploited an NGF-deprivation mouse model, the AD11 mice, in which the postnatal expression of an anti-NGF antibody leads to NGF neutralization and progressive neurodegeneration. Notably, we found that these mice also display increased myelination. A microRNA profiling of AD11 brain samples and qRT-PCR analyses revealed that NGF deprivation leads to an increase of miR-219a-5p levels in hippocampus and cortex and a corresponding down-regulation of its predicted targets. Neurospheres isolated from the hippocampus of AD11 mice give rise to more oligodendrocytes and this process is dependent on miR-219a-5p, as shown by decoy-mediated inhibition of this microRNA. Moreover, treatment of AD11 neurospheres with NGF inhibits miR-219a-5p up-regulation and, consequently, oligodendrocyte differentiation, while anti-NGF treatment of wild type (WT) oligodendrocyte progenitors increases miR-219a-5p expression and the number of mature cells. Overall, this study indicates that NGF inhibits oligodendrogenesis and myelination by down-regulating miR-219a-5p levels, suggesting a novel molecular circuitry that can be exploited for the discovery of new effectors for remyelination in human demyelinating diseases, such as Multiple Sclerosis.


Asunto(s)
Apoptosis/genética , Diferenciación Celular/genética , MicroARNs/genética , Factor de Crecimiento Nervioso/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Ratones , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA