Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 123(2): 249-260, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36449098

RESUMEN

PURPOSE: Mitochondrial dynamics are regulated by the differing molecular pathways variously governing biogenesis, fission, fusion, and mitophagy. Adaptations in mitochondrial morphology are central in driving the improvements in mitochondrial bioenergetics following exercise training. However, there is a limited understanding of mitochondrial dynamics in response to inactivity. METHODS: Skeletal muscle biopsies were obtained from middle-aged males (n = 24, 49.4 ± 3.2 years) who underwent sequential 14-day interventions of unilateral leg immobilisation, ambulatory recovery, and resistance training. We quantified vastus lateralis gene and protein expression of key proteins involved in mitochondrial biogenesis, fusion, fission, and turnover in at baseline and following each intervention. RESULTS: PGC1α mRNA decreased 40% following the immobilisation period, and was accompanied by a 56% reduction in MTFP1 mRNA, a factor involved in mitochondrial fission. Subtle mRNA decreases were also observed in TFAM (17%), DRP1 (15%), with contrasting increases in BNIP3L and PRKN following immobilisation. These changes in gene expression were not accompanied by changes in respective protein expression. Instead, we observed subtle decreases in NRF1 and MFN1 protein expression. Ambulatory recovery restored mRNA and protein expression to pre-intervention levels of all altered components, except for BNIP3L. Resistance training restored BNIP3L mRNA to pre-intervention levels, and further increased mRNA expression of OPA-1, MFN2, MTFP1, and PINK1 past baseline levels. CONCLUSION: In healthy middle-aged males, 2 weeks of immobilisation did not induce dramatic differences in markers of mitochondria fission and autophagy. Restoration of ambulatory physical activity following the immobilisation period restored altered gene expression patterns to pre-intervention levels, with little evidence of further adaptation to resistance exercise training.


Asunto(s)
Dinámicas Mitocondriales , Proteínas Mitocondriales , Masculino , Persona de Mediana Edad , Humanos , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762694

RESUMEN

Ectopic lipid accumulation, including intra-pancreatic fat deposition (IPFD), exacerbates type 2 diabetes risk in susceptible individuals. Dysregulated circulating microRNAs (miRNAs) have been identified as correlating with clinical measures of pancreatitis, pancreatic cancer and type 1 diabetes. The aim of the current study was therefore to examine the association between circulating abundances of candidate miRNAs, IPFD and liver fat deposition as quantified using magnetic resonance imaging (MRI) and spectroscopy (MRS). Asian Chinese (n = 34; BMI = 26.7 ± 4.2 kg/m2) and European Caucasian (n = 34; BMI = 28.0 ± 4.5 kg/m2) females from the TOFI_Asia cohort underwent MRI and MRS analysis of pancreas (MR-%IPFD) and liver fat (MR-%liver fat), respectively, to quantify ectopic lipid deposition. Plasma miRNA abundances of a subset of circulatory miRNAs associated with IPFD and liver fat deposition were quantified by qRT-PCR. miR-21-3p and miR-320a-5p correlated with MR-%IPFD, plasma insulin and HOMA2-IR, but not MR-%liver fat. MR-%IPFD remained associated with decreasing miR-21-3p abundance following multivariate regression analysis. miR-21-3p and miR-320a were demonstrated to be negatively correlated with MR-%IPFD, independent of ethnicity. For miR-21-3p, this relationship persists with the inclusion of MR-%liver fat in the model, suggesting the potential for a wider application as a specific circulatory correlate of IPFD.

3.
Am J Physiol Cell Physiol ; 320(4): C591-C601, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471625

RESUMEN

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alter mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 yr). The participants were further randomized to receive daily supplementation of 20 g/d of protein (n = 12; milk protein concentrate) or isocaloric carbohydrate placebo (n = 13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K, and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared with the protein supplementation groups (37% ± 13% vs. 14% ± 11% and 38% ± 20% vs. 25% ± 8%, respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization-induced change in the in silico-predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation, and 20 g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


Asunto(s)
Suplementos Dietéticos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Leche/administración & dosificación , Atrofia Muscular/dietoterapia , Músculo Cuádriceps/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Inmovilización , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Proteínas de la Leche/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Periodo Posprandial , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Factores de Tiempo , Resultado del Tratamiento
4.
J Physiol ; 599(16): 3897-3912, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34180063

RESUMEN

KEY POINTS: Loss of ß-catenin impairs in vivo and isolated muscle exercise/contraction-stimulated glucose uptake. ß-Catenin is required for exercise-induced skeletal muscle actin cytoskeleton remodelling. ß-Catenin675 phosphorylation during exercise may be intensity dependent. ABSTRACT: The conserved structural protein ß-catenin is an emerging regulator of vesicle trafficking in multiple tissues and supports insulin-stimulated glucose transporter 4 (GLUT4) translocation in skeletal muscle by facilitating cortical actin remodelling. Actin remodelling may be a convergence point between insulin and exercise/contraction-stimulated glucose uptake. Here we investigated whether ß-catenin is involved in regulating exercise/contraction-stimulated glucose uptake. We report that the muscle-specific deletion of ß-catenin induced in adult mice (BCAT-mKO) impairs both exercise- and contraction (isolated muscle)-induced glucose uptake without affecting running performance or canonical exercise signalling pathways. Furthermore, high intensity exercise in mice and contraction of myotubes and isolated muscles led to the phosphorylation of ß-cateninS675 , and this was impaired by Rac1 inhibition. Moderate intensity exercise in control and Rac1 muscle-specific knockout mice did not induce muscle ß-cateninS675 phosphorylation, suggesting exercise intensity-dependent regulation of ß-cateninS675 . Introduction of a non-phosphorylatable S675A mutant of ß-catenin into myoblasts impaired GLUT4 translocation and actin remodelling stimulated by carbachol, a Rac1 and RhoA activator. Exercise-induced increases in cross-sectional phalloidin staining (F-actin marker) of gastrocnemius muscle was impaired in muscle from BCAT-mKO mice. Collectively our findings suggest that ß-catenin is required for optimal glucose transport in muscle during exercise/contraction, potentially via facilitating actin cytoskeleton remodelling.


Asunto(s)
Glucosa , beta Catenina , Animales , Estudios Transversales , Transportador de Glucosa de Tipo 4 , Insulina/metabolismo , Ratones , Contracción Muscular , Músculo Esquelético/metabolismo , Proteína de Unión al GTP rac1/metabolismo
5.
Am J Physiol Endocrinol Metab ; 321(4): E560-E570, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486403

RESUMEN

Neutrophils accumulate in insulin-sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet-induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high-fat diet (HFD) were randomized to receive intraperitoneal injections three times weekly of either Prolastin (human A1AT; 2 mg) or vehicle (PBS) for 10 wk. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance, or insulin sensitivity in chow-fed mice. In contrast, Prolastin treatment attenuated HFD-induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473 phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin resistance by impairing insulin-induced IRS-1 signaling.NEW & NOTEWORTHY Neutrophils accumulate in peripheral tissues during obesity and are critical coordinators of tissue inflammatory responses. Here, we provide evidence that inhibition of the primary neutrophil protease, neutrophil elastase, with α1-antitrypsin A (A1AT) can improve insulin sensitivity and glucose homeostasis of mice fed a high-fat diet. This was attributed to improved insulin-induced IRS-1 phosphorylation in white adipose tissue and provides further support for a role of neutrophils in mediating diet-induced peripheral tissue insulin resistance.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Dieta Alta en Grasa , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Elastasa de Leucocito/antagonistas & inhibidores , alfa 1-Antitripsina/farmacología , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal
6.
J Am Soc Nephrol ; 31(5): 962-982, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198276

RESUMEN

BACKGROUND: Mutations in CTNS-a gene encoding the cystine transporter cystinosin-cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. METHODS: To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis-including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis-and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. RESULTS: Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. CONCLUSIONS: These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.


Asunto(s)
Cisteamina/uso terapéutico , Cistinosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Everolimus/uso terapéutico , Células Madre Pluripotentes Inducidas/trasplante , Organoides/trasplante , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Autofagia/efectos de los fármacos , Sistemas CRISPR-Cas , Línea Celular , Cisteamina/farmacología , Cistina/sangre , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Everolimus/farmacología , Edición Génica , Xenoinjertos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Ratones , Ratones SCID , Organoides/metabolismo , Fenotipo
7.
Eur J Appl Physiol ; 120(7): 1657-1669, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32458156

RESUMEN

PURPOSE: Excess production of reactive oxygen species (ROS) from the mitochondria can promote mitochondrial dysfunction and has been implicated in the development of a range of chronic diseases. As such there is interest in whether mitochondrial-targeted antioxidant supplementation can attenuate mitochondrial-associated oxidative stress. We investigated the effect of MitoQ and CoQ10 supplementation on oxidative stress and skeletal muscle mitochondrial ROS levels and function in healthy middle-aged men. METHODS: Skeletal muscle and blood samples were collected from twenty men (50 ± 1 y) before and following six weeks of daily supplementation with MitoQ (20 mg) or CoQ10 (200 mg). High-resolution respirometry was used to determine mitochondrial respiration and H2O2 levels, markers of mitochondrial mass and antioxidant defences were measured in muscle samples and oxidative stress markers in urine and blood samples. RESULTS: Both MitoQ and CoQ10 supplementation suppressed mitochondrial net H2O2 levels during leak respiration, while MitoQ also elevated muscle catalase expression. However, neither supplement altered urine F2-isoprostanes nor plasma TBARS levels. Neither MitoQ nor CoQ10 supplementation had a significant impact on mitochondrial respiration or mitochondrial density markers (citrate synthase, mtDNA/nDNA, PPARGC1A, OXPHOS expression). CONCLUSION: Our results suggest that neither MitoQ and CoQ10 supplements impact mitochondrial function, but both can mildly suppress mitochondrial ROS levels in healthy middle-aged men, with some indication that MitoQ may be more effective than CoQ10.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Ubiquinona/análogos & derivados , Adulto , Antioxidantes/farmacología , Suplementos Dietéticos , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/metabolismo
8.
Am J Physiol Cell Physiol ; 316(2): C293-C298, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601673

RESUMEN

Loss of muscle size and strength with aging is a major cause of morbidity. Although muscle size and strength are measured by imaging or fiber cross-sectional staining and exercise testing, respectively, the development of circulatory biomarkers for these phenotypes would greatly simplify identification of muscle function deficits. MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene translation and, thereby, contribute to muscle phenotype. To assess circulatory miRNAs (c-miRNAs) applicability as potential biomarkers of muscular phenotypes, fasting plasma and muscle samples were obtained from 50 middle-aged healthy men [mean (SD); age: 48.8 yr (SD 4.5); BMI: 26.6 kg/m2 (SD 3.3)]. RT-PCR of 38 miRNAs with known regulatory function within skeletal muscle identified four c-miRNAs (miR-221, miR-451a, miR-361, and miR-146a) related to either total body lean mass, leg lean mass, and 50% thigh cross-sectional area (CSA), but not strength. There was no relationship with the expression of these miRNAs in muscle. Six miRNAs within muscle were correlated with whole body lean mass, leg lean mass, and isometric knee extension torque (miR-133a and miR-146a), and 50% thigh CSA (miR-486, miR-208b, miR-133b, and miR-208a). Only miR-23b demonstrated a relationship between tissue and circulatory expression; however, only 10% of the variance was explained. miR-146a in both plasma and muscle was related to phenotype; however, no relationship between plasma and muscle expression was evident. A different subset of miRNAs correlated to muscle phenotype in muscle compared with plasma samples, suggesting that c-miRNA biomarkers of muscle phenotype are likely unrelated to muscle expression in healthy individuals.


Asunto(s)
MicroARN Circulante/sangre , Ejercicio Físico/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Absorciometría de Fotón/métodos , Adulto , Biomarcadores/sangre , Humanos , Masculino , Persona de Mediana Edad
9.
J Nutr ; 149(9): 1511-1522, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152658

RESUMEN

BACKGROUND: Resistance exercise and dietary protein stimulate muscle protein synthesis (MPS). The rate at which proteins are digested and absorbed into circulation alters peak plasma amino acid concentrations and may modulate postexercise MPS. A novel mineral modified milk protein concentrate (mMPC), with identical amino acid composition to standard milk protein concentrate (MPC), was formulated to induce rapid aminoacidemia. OBJECTIVES: The aim of this study was to determine whether rapid aminoacidemia and greater peak essential amino acid (EAA) concentrations induced by mMPC would stimulate greater postresistance exercise MPS, anabolic signaling, and ribosome biogenesis compared to standard dairy proteins, which induce a small but sustained plasma essential aminoacidemia. METHODS: Thirty healthy young men (22.5 ± 3.0 y; BMI 23.8 ± 2.7 kg/m2) received primed constant infusions of l-[ring-13C6]-phenylalanine and completed 3 sets of leg presses and leg extensions at 80% of 1 repetition. Afterwards, participants were randomly assigned in a double-blind fashion to consume 25 g mMPC, MPC, or calcium caseinate (CAS). Vastus lateralis biopsies were collected at rest, and 2 and 4 h post exercise. RESULTS: Plasma EAA concentrations, including leucine, were 19.2-26.6% greater in the mMPC group 45-90 min post ingestion than in MPC and CAS groups (P < 0.001). Myofibrillar fractional synthetic rate from baseline to 4 h was increased by 82.6 ± 64.8%, 137.8 ± 72.1%, and 140.6 ± 52.4% in the MPC, mMPC, and CAS groups, respectively, with no difference between groups (P = 0.548). Phosphorylation of anabolic signaling targets (P70S6KThr389, P70S6KThr421/Ser424, RPS6Ser235/236, RPS6Ser240/244, P90RSKSer380, 4EBP1) were elevated by <3-fold at both 2 and 4 h post exercise in all groups (P < 0.05). CONCLUSIONS: The amplitude of plasma leucine and EAA concentrations does not modulate the anabolic response to resistance exercise after ingestion of 25 g dairy protein in young men. This trial was registered at http://www.anzctr.org.au/ as ACTRN12617000393358.


Asunto(s)
Aminoácidos Esenciales/sangre , Ejercicio Físico , Proteínas de la Leche/administración & dosificación , Adolescente , Adulto , Método Doble Ciego , Humanos , Insulina/sangre , Masculino , Proteínas Musculares/biosíntesis , Entrenamiento de Fuerza , Proteínas Ribosómicas/análisis , Adulto Joven
10.
Physiol Genomics ; 50(6): 416-424, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602299

RESUMEN

The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-ß/SMAD3 pathway.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Fuerza Muscular/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fenotipo , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
11.
Am J Physiol Endocrinol Metab ; 315(4): E723-E733, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29969318

RESUMEN

MicroRNAs (miRNAs) regulate gene expression via transcript degradation and translational inhibition, and they may also function as long distance signaling molecules. Circulatory miRNAs are either protein-bound or packaged within vesicles (exosomes). Ten young men (24.6 ± 4.0 yr) underwent a single bout of high-intensity interval cycling exercise. Vastus lateralis biopsies and plasma were collected immediately before and after exercise, as well as 4 h following the exercise bout. Twenty-nine miRNAs previously reported to be regulated by acute exercise were assessed within muscle, venous plasma, and enriched circulatory exosomes via qRT-PCR. Of the 29 targeted miRNAs, 11 were altered in muscle, 8 in plasma, and 9 in the exosome fraction. Although changes in muscle and plasma expression were bidirectional, all regulated exosomal miRNAs increased following exercise. Three miRNAs were altered in all three sample pools (miR-1-3p, -16-5p, and -222-3p), three in both muscle and plasma (miR-21-5p, -134-3p, and -107), three in both muscle and exosomes (miR-23a-3p, -208a-3p, and -150-5p), and three in both plasma and exosomes (miR-486-5p, -126-3p, and -378a-5p). There was a marked discrepancy between the observed alterations between sample pools. A subset of exosomal miRNAs increased in abundance following exercise, suggesting an exercise-induced release of exosomes enriched in specific miRNAs. The uniqueness of the exosomal miRNA response suggests its relevance as a sample pool that needs to be further explored in better understanding biological functions.


Asunto(s)
Ejercicio Físico/fisiología , Exosomas/metabolismo , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Adulto , Voluntarios Sanos , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino , MicroARNs/sangre , Adulto Joven
12.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R824-R833, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29466686

RESUMEN

Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common postexercise recovery modality, may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 wk, with either 10 min of CWI ( n = 11) or ACT ( n = 10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber percent decreased ( P = 0.013) and type IIa myofiber percent increased with training ( P = 0.012), with no difference between groups. The number of capillaries per fiber increased from pretraining in the CWI group ( P = 0.004) but not the ACT group ( P = 0.955). Expression of myosin heavy chain genes ( MYH1 and MYH2), encoding type IIx and IIa fibers, respectively, decreased in the ACT group, whereas MYH7 (encoding type I fibers) increased in the ACT group versus CWI ( P = 0.004). Myosin heavy chain IIa protein increased with training ( P = 0.012) with no difference between groups. The proangiogenic vascular endothelial growth factor protein decreased posttraining in the ACT group versus CWI ( P < 0.001), whereas antiangiogenic Sprouty-related, EVH1 domain-containing protein 1 protein increased with training in both groups ( P = 0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16, and -126) increased only in the ACT group ( P < 0.05). CWI recovery after each training session altered the angiogenic and fiber type-specific response to RT through regulation at the levels of microRNA, gene, and protein expression.


Asunto(s)
Frío , Inmersión , Fibras Musculares Esqueléticas/fisiología , Neovascularización Fisiológica/fisiología , Entrenamiento de Fuerza , Capilares/fisiología , Miosinas Cardíacas/biosíntesis , Humanos , Masculino , MicroARNs/biosíntesis , Fuerza Muscular/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/citología , Cadenas Pesadas de Miosina/biosíntesis , Flujo Sanguíneo Regional/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Adulto Joven
13.
Eur J Appl Physiol ; 118(6): 1241-1253, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29574525

RESUMEN

PURPOSE: Dietary protein and resistance exercise (RE) are both potent stimuli of the mammalian target of rapamycin complex 1 (mTORC1). Sestrins1, 2, 3 are multifunctional proteins that regulate mTORC1, stimulate autophagy and alleviate oxidative stress. Of this family, Sestrin2 is a putative leucine sensor implicated in mTORC1 and AMP-dependent protein kinase (AMPK) regulation. There is currently no data examining the responsiveness of Sestrin2 to dietary protein ingestion, with or without RE. METHODS: In Study 1, 16 males ingested either 10 or 20 g of milk protein concentrate (MPC) with muscle biopsies collected pre, 90 and 210 min post-beverage consumption. In Study 2, 20 males performed a bout of RE immediately followed by the consumption of 9 g of MPC or carbohydrate placebo. Analysis of Sestrins, AMPK and antioxidant responses was examined. RESULTS: Dietary protein ingestion did not result in Sestrin2 mobility shift. After RE, Sestrin2 phosphorylation state was significantly altered and was not further modified by post-exercise protein or carbohydrate ingestion. With RE, AMPK phosphorylation remained stable, while the mRNA expressions of several antioxidants were upregulated. CONCLUSIONS: Dietary protein ingestion did not affect the signalling by the family of Sestrins. With RE, Sestrin2 was hyperphosphorylated, with no further evidence of a relationship to AMPK signalling.


Asunto(s)
Proteínas en la Dieta/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Entrenamiento de Fuerza , Quinasas de la Proteína-Quinasa Activada por el AMP , Ingestión de Alimentos , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Fosforilación , Proteínas Quinasas/metabolismo
14.
Physiol Rep ; 11(15): e15784, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549955

RESUMEN

Cold water immersion (CWI) following intense exercise is a common athletic recovery practice. However, CWI impacts muscle adaptations to exercise training, with attenuated muscle hypertrophy and increased angiogenesis. Tissue temperature modulates the abundance of specific miRNA species and thus CWI may affect muscle adaptations via modulating miRNA expression following a bout of exercise. The current study focused on the regulatory mechanisms involved in cleavage and nuclear export of mature miRNA, including DROSHA, EXPORTIN-5, and DICER. Muscle biopsies were obtained from the vastus lateralis of young males (n = 9) at rest and at 2, 4, and 48 h of recovery from an acute bout of resistance exercise, followed by either 10 min of active recovery (ACT) at ambient temperature or CWI at 10°C. The abundance of key miRNA species in the regulation of intracellular anabolic signaling (miR-1 and miR-133a) and angiogenesis (miR-15a and miR-126) were measured, along with several gene targets implicated in satellite cell dynamics (NCAM and PAX7) and angiogenesis (VEGF and SPRED-1). When compared to ACT, CWI suppressed mRNA expression of DROSHA (24 h p = 0.025 and 48 h p = 0.017), EXPORTIN-5 (24 h p = 0.008), and DICER (24 h p = 0.0034). Of the analyzed miRNA species, miR-133a (24 h p < 0.001 and 48 h p = 0.007) and miR-126 (24 h p < 0.001 and 48 h p < 0.001) remained elevated at 24 h post-exercise in the CWI trial only. Potential gene targets of these miRNA, however, did not differ between trials. CWI may therefore impact miRNA abundance in skeletal muscle, although the precise physiological relevance needs further investigation.


Asunto(s)
MicroARNs , Entrenamiento de Fuerza , Humanos , Masculino , MicroARNs/genética , Transporte Activo de Núcleo Celular , Inmersión , Frío , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Agua , Carioferinas
15.
J Appl Physiol (1985) ; 131(2): 643-660, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33955259

RESUMEN

Myocellular stress with high-frequency blood flow-restricted resistance exercise (BFRRE) was investigated by measures of heat shock protein (HSP) responses, glycogen content, and inflammatory markers. Thirteen participants [age: 24 ± 2 yr (means ± SD), 9 males] completed two 5-day blocks of seven BFRRE sessions, separated by 10 days. Four sets of unilateral knee extensions to failure at 20% of one-repetition maximum (1RM) were performed. Muscle samples obtained before, 1 h after the first session in the first and second block (acute 1 and acute 2), after three sessions (day 4), during the "rest week," and at 3 (post 3) and 10 days postintervention (post 10) were analyzed for HSP70, αB-crystallin, glycogen [periodic acid-Schiff (PAS) staining], mRNAs, miRNAs, and CD68+ (macrophages) and CD66b+ (neutrophils) cell numbers. αB-crystallin translocated from the cytosolic to the cytoskeletal fraction after acute 1 and acute 2 (P < 0.05) and immunostaining revealed larger responses in type I than in type II fibers (acute 1, 225 ± 184% vs. 92 ± 81%, respectively, P = 0.001). HSP70 was increased in the cytoskeletal fraction at day 4 and post 3, and immunostaining intensities were more elevated in type I than in type II fibers at day 4 (206 ± 84% vs. 72 ± 112%, respectively, P <0.001), during the rest week (98 ± 66% vs. 42 ± 79%, P < 0.001), and at post 3 (115 ± 82% vs. 28 ± 78%, P = 0.003). Glycogen content was reduced in both fiber types, but most pronounced in type I, which did not recover until the rest week (-15% to 29%, P ≤ 0.001). Intramuscular macrophage numbers were increased by ∼65% postintervention, but no changes were observed in muscle neutrophils. We conclude that high-frequency BFRRE with sets performed till failure stresses both fiber types, with type I fibers being most affected.NEW & NOTEWORTHY BFRRE has been reported to preferentially stress type I muscle fibers, as evidenced by HSP responses. We extend these findings by showing that the HSP responses occur in both fiber types but more so in type I fibers and that they can still be induced after a short-term training period. Furthermore, the reductions in glycogen content of type I fibers after strenuous frequent BFRRE in unaccustomed subjects can be prolonged (≥5 days), probably due to microdamage.


Asunto(s)
MicroARNs , Entrenamiento de Fuerza , Adulto , Ejercicio Físico , Femenino , Humanos , Masculino , Fibras Musculares de Contracción Lenta , Músculo Esquelético , Flujo Sanguíneo Regional , Adulto Joven
16.
Biochim Biophys Acta Gen Subj ; 1865(11): 129991, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419510

RESUMEN

Mitochondrial-derived peptides (MDPs) are encoded by the mitochondrial genome and hypothesised to form part of a retrograde signalling network that modulates adaptive responses to metabolic stress. To understand how metabolic stress regulates MDPs in humans we assessed the association between circulating MOTS-c and SHLP2 and components of metabolic syndrome (MS), as well as depot-specific fat mass in participants without overt type 2 diabetes or cardiovascular disease. One-hundred and twenty-five Chinese participants (91 male, 34 female) had anthropometry, whole body dual-energy X-ray absorptiometry scans and fasted blood samples analysed. Chinese female participants and an additional 34 European Caucasian female participants also underwent magnetic resonance imaging and spectroscopy (MRI/S) for visceral, pancreatic and liver fat quantification. In Chinese participants (age = 41 ± 1 years, BMI = 27.8 ± 3.9 kg/m2), plasma MOTS-c (315 ± 27 pg/ml) and SHLP2 (1393 ± 82 pg/ml) were elevated in those with MS (n = 26). While multiple components of the MS sequelae positively associated with both MOTS-c and SHLP2, including blood pressure, fasting plasma glucose and triglycerides, the most significant of these was waist circumference (p < 0.0001). Android fat had a greater effect on increasing plasma MOTS-c (p < 0.004) and SHLP2 (p < 0.009) relative to whole body fat. Associations with MRI/S parameters corrected for total body fat mass revealed that liver fat positively associated with plasma MOTS-c and SHLP2 and visceral fat with SHLP2. Consistent with hepatic stress being a driver of circulating MDP concentrations, plasma MOTS-c and SHLP2 were higher in participants with elevated liver damage markers and in male C57Bl/6j mice fed a diet that induces hepatic lipid accumulation and damage. Our findings provide evidence that in the absence of overt type 2 diabetes, components of the MS positively associated with levels of MOTS-c and SHLP2 and that android fat, in particular liver fat, is a primary driver of these associations. MOTS-c and SHLP2 have previously been shown to have cyto- and metabolo-protective properties, therefore we suggest that liver stress may be a mitochondrial peptide signal, and that mitochondrial peptides are part of a hepatic centric-hormetic response intended to restore metabolic balance.


Asunto(s)
Grasas/metabolismo , Metiltestosterona/metabolismo , Proteínas Mitocondriales/metabolismo , Adolescente , Adulto , Anciano , Pueblo Asiatico , Femenino , Humanos , Hígado/química , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/sangre , Adulto Joven
17.
Nutrition ; 89: 111231, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33930787

RESUMEN

OBJECTIVES: Dietary strategies to promote successful aging are divergent. Higher-protein diets are recommended to preserve skeletal muscle mass and physical function. Conversely, increased B-vitamin intake, supporting one-carbon (1C) metabolism, reduces the risk of cognitive decline and cardiovascular disease. On the hypothesis that higher protein intake through animal-based sources will benefit 1C regulation by the supply of B vitamins (folate, riboflavin, and vitamins B6 and B12) and methyl donors (choline) despite higher methionine intake, this study explored the effect of a higher-protein diet on 1C metabolite status in older men compared to current protein recommendations. METHODS: Older men (age, 74 ± 3 y) were randomized to receive a diet for 10 wk containing either the recommended dietary allowance (RDA) of protein (0.8 g/kg body weight/d, n = 14), or double that amount (2RDA, n = 15), with differences in protein accounted for by modifying carbohydrate intake. Intervention diets were matched to each individual's energy requirements based on the Harris-Benedict equation and adjusted fortnightly as required depending on physical activity and satiety. Fasting plasma 1C metabolite concentrations were quantified by liquid chromatography coupled with mass spectrometry at baseline and after 10 wk of intervention. RESULTS: Plasma homocysteine concentrations were reduced from baseline to follow-up with both diets. Changes in metabolite ratios reflective of betaine-dependent homocysteine remethylation were specific to the RDA diet, with an increase in the betaine-to-choline ratio and a decrease in the dimethylglycine-to-betaine ratio. Comparatively, increasing folate intake was positively associated with a change in choline concentration and inversely with the betaine-to-choline ratio for the 2RDA group. CONCLUSIONS: Adding to the known benefits of higher protein intake in older people, this study supports a reduction of homocysteine with increased consumption of animal-based protein, although the health effects of differential response of choline metabolites to a higher-protein diet remain uncertain.


Asunto(s)
Dieta Rica en Proteínas , Complejo Vitamínico B , Anciano , Betaína , Carbono , Colina , Dieta , Ácido Fólico , Homocisteína , Humanos , Masculino
18.
J Cachexia Sarcopenia Muscle ; 12(1): 130-143, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33231914

RESUMEN

BACKGROUND: Translational capacity (i.e. ribosomal mass) is a key determinant of protein synthesis and has been associated with skeletal muscle hypertrophy. The role of translational capacity in muscle atrophy and regrowth from disuse is largely unknown. Therefore, we investigated the effect of muscle disuse and reloading on translational capacity in middle-aged men (Study 1) and in rats (Study 2). METHODS: In Study 1, 28 male participants (age 50.03 ± 3.54 years) underwent 2 weeks of knee immobilization followed by 2 weeks of ambulatory recovery and a further 2 weeks of resistance training. Muscle biopsies were obtained for measurement of total RNA and pre-ribosomal (r)RNA expression, and vastus lateralis cross-sectional area (CSA) was determined via peripheral quantitative computed tomography. In Study 2, male rats underwent hindlimb suspension (HS) for either 24 h (HS 24 h, n = 4) or 7 days (HS 7d, n = 5), HS for 7 days followed by 7 days of reloading (Rel, n = 5) or remained as ambulatory weight bearing (WB, n = 5) controls. Rats received deuterium oxide throughout the study to determine RNA synthesis and degradation, and mTORC1 signalling pathway was assessed. RESULTS: Two weeks of immobilization reduced total RNA concentration (20%) and CSA (4%) in men (both P ≤ 0.05). Ambulatory recovery restored total RNA concentration to baseline levels and partially restored muscle CSA. Total RNA concentration and 47S pre-rRNA expression increased above basal levels after resistance training (P ≤ 0.05). In rats, RNA synthesis was 30% lower while degradation was ~400% higher in HS 7d in soleus and plantaris muscles compared with WB (P ≤ 0.05). mTORC1 signalling was lower in HS compared with WB as was 47S pre-rRNA (P ≤ 0.05). With reloading, the aforementioned parameters were restored to WB levels while RNA degradation was suppressed (P ≤ 0.05). CONCLUSIONS: Changes in RNA concentration following muscle disuse and reloading were associated with changes in ribosome biogenesis and degradation, indicating that both processes are important determinants of translational capacity. The pre-clinical data help explain the reduced translational capacity after muscle immobilization in humans and demonstrate that ribosome biogenesis and degradation might be valuable therapeutic targets to maintain muscle mass during disuse.


Asunto(s)
Ribosomas , Animales , Suspensión Trasera , Masculino , Músculo Esquelético/patología , Atrofia Muscular/patología , Biosíntesis de Proteínas , Ratas
19.
Sci Adv ; 7(51): eabl4988, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910515

RESUMEN

Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity.

20.
Nutrients ; 13(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34684481

RESUMEN

A high protein intake at old age is important for muscle protein synthesis, however, this could also trigger protein oxidation with the potential risk for DNA damage. The aim of this study was to investigate whether an increased protein intake at recommended level or well above would affect DNA damage or change levels of reduced (GSH) and oxidised glutathione (GSSG) in community-dwelling elderly subjects. These analyses were performed in two randomized intervention studies, in Austria and in New Zealand. In both randomized control trials, the mean protein intake was increased with whole foods, in the New Zealand study (n = 29 males, 74.2 ± 3.6 years) to 1.7 g/kg body weight/d (10 weeks intervention; p < 0.001)) in the Austrian study (n = 119 males and females, 72.9 ± 4.8 years) to 1.54 g/kg body weight/d (6 weeks intervention; p < 0.001)). In both studies, single and double strand breaks and as formamidopyrimidine-DNA glycosylase-sensitive sites were investigated in peripheral blood mononuclear cells or whole blood. Further, resistance to H2O2 induced DNA damage, GSH, GSSG and CRP were measured. Increased dietary protein intake did not impact on DNA damage markers and GSH/GSSG levels. A seasonal-based time effect (p < 0.05), which led to a decrease in DNA damage and GSH was observed in the Austrian study. Therefore, increasing the protein intake to more than 20% of the total energy intake in community-dwelling seniors in Austria and New Zealand did not increase measures of DNA damage, change glutathione status or elevate plasma CRP.


Asunto(s)
Daño del ADN , Proteínas en la Dieta/farmacología , Redes y Vías Metabólicas , Anciano , Anciano de 80 o más Años , Austria , Biomarcadores/sangre , Ingestión de Energía , Femenino , Humanos , Lípidos/sangre , Masculino , Nueva Zelanda , Nutrientes/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA