Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Breast Cancer Res ; 20(1): 108, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185216

RESUMEN

BACKGROUND: Breast cancer has been considered not highly immunogenic, and few patients benefit from current immunotherapies. However, new strategies are aimed at changing this paradigm. In the present study, we examined the in vivo activity of a humanized anti-programmed cell death protein 1 (anti-PD-1) antibody against triple-negative breast cancer (TNBC) patient-derived xenograft (PDX) tumor models. METHODS: To circumvent some of the limitations posed by the lack of appropriate animal models in preclinical studies of immunotherapies, partially human leukocyte antigen-matched TNBC PDX tumor lines from our collection, as well as human melanoma cell lines, were engrafted in humanized nonobese diabetic/severe combined immunodeficiency IL2Rγnull (hNSG) mice obtained by intravenous injection of CD34+ hematopoietic stem cells into nonlethally irradiated 3-4-week-old mice. After both PDXs and melanoma cell xenografts reached ~ 150-200 mm3, animals were treated with humanized anti-PD-1 antibody or anti-CTLA-4 and evaluated for tumor growth, survival, and potential mechanism of action. RESULTS: Human CD45+, CD20+, CD3+, CD8+, CD56+, CD68+, and CD33+ cells were readily identified in blood, spleen, and bone marrow collected from hNSG, as well as human cytokines in blood and engrafted tumors. Engraftment of TNBC PDXs in hNSG was high (~ 85%), although they grew at a slightly slower pace and conserved their ability to generate lung metastasis. Human CD45+ cells were detectable in hNSG-harbored PDXs, and consistent with clinical observations, anti-PD-1 antibody therapy resulted in both a significant reduction in tumor growth and increased survival in some of the hNSG PDX tumor lines, whereas no such effects were observed in the corresponding non-hNSG models. CONCLUSIONS: This study provides evidence associated with anti-PD-1 immunotherapy against TNBC tumors supporting the use of TNBC PDXs in humanized mice as a model to overcome some of the technical difficulties associated with the preclinical investigation of immune-based therapies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Citocinas/sangre , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Receptor de Muerte Celular Programada 1/inmunología , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/inmunología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
4.
Adv Sci (Weinh) ; 10(9): e2206873, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658712

RESUMEN

Agonist CD40 monoclonal antibodies (mAb) is a promising immunotherapeutic agent for cold-to-hot tumor immune microenvironment (TIME) conversion. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer known as an immune desert, and therefore urgently needs more effective treatment. Conventional systemic treatment fails to effectively penetrate the characteristic dense tumor stroma. Here, it is shown that sustained low-dose intratumoral delivery of CD40 mAb via the nanofluidic drug-eluting seed (NDES) can modulate the TIME to reduce tumor burden in murine models. NDES achieves tumor reduction at a fourfold lower dosage than systemic treatment while avoiding treatment-related adverse events. Further, abscopal responses are shown where intratumoral treatment yields growth inhibition in distant untreated tumors. Overall, the NDES is presented as a viable approach to penetrate the PDAC immune barrier in a minimally invasive and effective manner, for the overarching goal of transforming treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Inmunoterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral , Antígenos CD40 , Neoplasias Pancreáticas
5.
Bioeng Transl Med ; 8(6): e10594, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023719

RESUMEN

Immune checkpoint inhibitors (ICI), pembrolizumab and atezolizumab, were recently approved for treatment-refractory triple-negative breast cancer (TNBC), where those with Programmed death-ligand 1 (PD-L1) positive early-stage disease had improved responses. ICIs are administered systemically in the clinic, however, reaching effective therapeutic dosing is challenging due to severe off-tumor toxicities. As such, intratumoral (IT) injection is increasingly investigated as an alternative delivery approach. However, repeated administration, which sometimes is invasive, is required due to rapid drug clearance from the tumor caused by increased interstitial fluid pressure. To minimize off-target drug biodistribution, we developed the nanofluidic drug-eluting seed (NDES) platform for sustained intratumoral release of therapeutic via molecular diffusion. Here we compared drug biodistribution between the NDES, intraperitoneal (IP) and intratumoral (IT) injection using fluorescently labeled PD-L1 monoclonal antibody (αPD-L1). We used two syngeneic TNBC murine models, EMT6 and 4T1, that differ in PD-L1 expression, immunogenicity, and transport phenotype. We investigated on-target (tumor) and off-target distribution using different treatment approaches. As radiotherapy is increasingly used in combination with immunotherapy, we sought to investigate its effect on αPD-L1 tumor accumulation and systemic distribution. The NDES-treated cohort displayed sustained levels of αPD-L1 in the tumor over the study period of 14 days with significantly lower off-target organ distribution, compared to the IP or IT injection. However, we observed differences in the biodistribution of αPD-L1 across tumor models and with radiation pretreatment. Thus, we sought to extensively characterize the tumor properties via histological analysis, diffusion evaluation and nanoparticles contrast-enhanced CT. Overall, we demonstrate that ICI delivery via NDES is an effective method for sustained on-target tumor delivery across tumor models and combination treatments.

6.
Sci Rep ; 12(1): 4674, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304527

RESUMEN

Red cell overproduction is seen in polycythemia vera (PV), a bone marrow myeloproliferative neoplasm characterized by trilinear cell proliferation (WBC, platelets), as well as in secondary erythrocytosis (SE), a group of heterogeneous disorders characterized by elevated EPO gene transcription. We aimed to verify the concordance of the International Classification of Diseases (ICD) code-based diagnosis of "polycythemia" or "erythrocytosis" with the true clinical diagnosis of these conditions. We retrospectively reviewed the electronic medical records (January 1, 2005, to December 31, 2016) of adult patients with ICD codes of polycythemia and/or erythrocytosis who had testing done for the presence of the JAK2V617F mutation. We verified the accuracy of the ICD code-based diagnoses by meticulous chart review and established whether these patients fulfilled the criteria by the evaluating physician for PV or SE and according to the World Health Organization 2016 diagnostic guidelines. The reliability of ICD coding was calculated using Cohen's kappa. We identified and chart reviewed a total of 578 patient records. Remarkably, 11% of the patients had concurrent diagnosis codes for PV and SE and were unable to be classified appropriately without individual chart review. The ICD code-based diagnostic system led to misidentification in an important fraction of cases. This represents a problem for the detection of PV or SE cases by ICD-based registries and their derived studies. Research based exclusively on ICD codes could have a potential impact on patient care and public health, and limitations must be weighed when research findings are conveyed.


Asunto(s)
Policitemia Vera , Policitemia , Adulto , Humanos , Janus Quinasa 2/genética , Policitemia/diagnóstico , Policitemia/genética , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Reproducibilidad de los Resultados , Estudios Retrospectivos
7.
J Oncol ; 2022: 6001947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36478748

RESUMEN

Purpose: To evaluate whether changes in genomic expression that occur beginning with breast cancer (BC) diagnosis and through to tumor resection after neoadjuvant chemotherapy (NCT) reveal biomarkers that can help predict therapeutic response and survival. Materials and Methods: We determined gene expression profiles based on microarrays in tumor samples from 39 BC patients who showed pathologic complete response (pCR) or therapeutic failure (non-pCR) after NCT (cyclophosphamide-doxorubicin/epirubicin). Based on unsupervised clustering of gene expression, together with functional enrichment analyses of differentially expressed genes, we selected NUSAP1, PCLAF, MME, and DST. We evaluated the NCT response and the expression of these four genes in BC histologic subtypes. In addition, we study the presence of tumor-infiltrating lymphocytes. Finally, we analyze the correlation between NUSAP1 and PCLAF against disease-free survival (DFS) and overall survival (OS). Results: A signature of 43 differentially expressed genes discriminated pCR from non-pCR patients (|fold change >2|, false discovery rate <0.05) only in biopsies taken after surgery. Patients achieving pCR showed downregulation of NUSAP1 and PCLAF in tumor tissues and increased DFS and OS, while overexpression of these genes correlated with poor therapeutic response and OS. These genes are involved in the regulation of mitotic division. Conclusions: The downregulation of NUSAP1 and PCLAF after NCT is associated with the tumor response to chemotherapy and patient survival.

8.
Clin Lymphoma Myeloma Leuk ; 21(4): 224-229, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33349602

RESUMEN

INTRODUCTION: Considering the evolving diagnostic criteria of polycythemia vera (PV), we analyzed the utility of serum erythropoietin (EPO) as a predictive marker for differentiating polycythemia vera (PV) from other etiologies of erythrocytosis. PATIENTS AND METHODS: We conducted a retrospective study after a review of electronical medical records from January 2005 to December 2016 with diagnosis of erythrocytosis using International Classification of Disease-specific codes. To evaluate the diagnostic performance of EPO levels and JAK2-V617F mutation, we constructed a receiver-operated characteristic curve of sensitivity versus 1-specificity for serum EPO levels and JAK2-V617F mutation as predictive markers for differentiating PV from other causes of erythrocytosis. RESULTS: We surveyed 577 patients with erythrocytosis. Median patient age was 59.2 years, 57.72% (n = 329) were male, 86.3% (n = 491) were white, and only 3.3% (n = 19) were African American. A total of 80.88% (n = 351) of those diagnosed with PV had a JAK2-V617F mutation compared to only 1.47% (n = 2) whose primary diagnosis was secondary polycythemia. When comparing JAK2-V617 mutation to the EPO level, the area under the curve of JAK2-V617 (0.8970) was statistically larger than that of EPO test (0.6765). Therefore, the PV diagnostic methodology using JAK2-V617 is better than the EPO test. An EPO level of < 2 mIU/mL was > 99% specific to predict PV but was only 12% sensitive. CONCLUSION: In the appropriate clinical setting, cytogenetic and molecular studies such as JAK2 mutation status prevail as the most useful tools for PV case identification. The use of isolated EPO to screen patients with erythrocytosis is not a good diagnostic approach.


Asunto(s)
Eritropoyetina/sangre , Janus Quinasa 2/genética , Policitemia Vera/diagnóstico , Policitemia/etiología , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Instituciones Oncológicas , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Mutación , Policitemia Vera/sangre , Policitemia Vera/complicaciones , Policitemia Vera/genética , Valor Predictivo de las Pruebas , Curva ROC , Estudios Retrospectivos
9.
Lung India ; 37(3): 252-256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32367848

RESUMEN

Pulmonary alveolar proteinosis (PAP) is characterized by accumulation of surfactant-like lipoprotein material within distal bronchioles and alveoli due to impaired clearance. Clinically, PAP presents with dyspnea and cough. A 58-year-old Hispanic man presented with 6 months of productive cough, weight loss, and progressively worsening dyspnea. He reported a long history of poorly controlled type 2 diabetes that led to diabetic nephropathy. The patient had a strong passive smoking history for over 30 years and exposure to woodsmoke. He had pulmonary tuberculosis in 2007 and 2012. In 2011, he was diagnosed with renal failure, was dialyzed for a year, and received a renal transplant in 2012. His posttransplant medication regimens included tacrolimus, mycophenolic acid, and prednisone. Six months after the transplant, he suffered graft rejection, managed with steroids and switching from tacrolimus to sirolimus. His physical examination demonstrated scattered inspiratory crackles, and a chest X-ray showed bilateral perihilar ground-glass opacities. PAP was diagnosed through lung biopsy, which showed eosinophilic granular infiltrate withing the alveoli. Sirolimus was switched back to tacrolimus 2 mg in September 2018. PAP diagnosis included hematoxylin and eosin and PAS. Clinical follow-up included oxygen saturation with pulse oximeter and chest X-rays. A 2-month follow-up showed only partial improvement in both symptoms and radiological findings. In January 2019, a follow-up showed complete radiological and symptomatologic resolution. After 5 months, the patient remains asymptomatic with adequate exertion tolerance. PAP remains a diagnosis of exclusion in patients undergoing immunomodulatory therapy with sirolimus and pulmonary symptoms. Reversal can be achieved by switching agents.

10.
Clin Cancer Res ; 24(5): 1152-1162, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29301832

RESUMEN

Purpose: Chemoresistance in triple-negative breast cancer (TNBC) is associated with the activation of a survival mechanism orchestrated by the endoplasmic reticulum (EnR) stress response and by inducible nitric oxide synthase (iNOS). Our aim was to determine the effects of pharmacologic NOS inhibition on TNBC.Experimental Design: TNBC cell lines, SUM-159PT, MDA-MB-436, and MDA-MB-468, were treated with docetaxel and NOS inhibitor (L-NMMA) for 24, 48, and 72 hours. Apoptosis was assessed by flow cytometry using Annexin-V and propidium iodide. Western blot was used to assess ER stress and apoptosis, and rtPCR was used to evaluate s-XBP1. TNBC patient-derived xenografts (PDX) were treated either with vehicle, docetaxel, or combination therapy (NOS inhibition + docetaxel). Mouse weight and tumor volumes were recorded twice weekly. Docetaxel concentration was determined using mass spectrometry. To quantify proliferation and apoptosis, PDX tumor samples were stained using Ki67 and TUNEL assay.Results:In vitro, L-NMMA ameliorated the iNOS upregulation associated with docetaxel. Apoptosis increased when TNBC cells were treated with combination therapy. In TNBC PDXs, combination therapy significantly reduced tumor volume growth and increased survival proportions. In the BCM-5998 PDX model, intratumoral docetaxel concentration was higher in mice receiving combination therapy. Coupling docetaxel with NOS inhibition increased EnR-stress response via coactivation of ATF4 and CHOP, which triggered the pASK1/JNK proapoptotic pathway, promoting cleavage of caspases 3 and 9.Conclusions: iNOS is a critical target for docetaxel resistance in TNBC. Pharmacologic inhibition of NOS enhanced chemotherapy response in TNBC PDX models. Combination therapy may improve prognosis and prevent relapse in TNBC patients who have failed conventional chemotherapy. Clin Cancer Res; 24(5); 1152-62. ©2018 AACR.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Docetaxel/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , omega-N-Metilarginina/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Docetaxel/uso terapéutico , Sinergismo Farmacológico , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones SCID , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , omega-N-Metilarginina/uso terapéutico
12.
Sci Transl Med ; 8(334): 334ra53, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075627

RESUMEN

Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.


Asunto(s)
Cromosomas Humanos Par 9/genética , Amplificación de Genes , Sitios Genéticos , Janus Quinasa 2/genética , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Estudios de Cohortes , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Persona de Mediana Edad , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA