Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Proteome Res ; 22(7): 2339-2351, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37227083

RESUMEN

Over the past 30 years, Acinetobacter baumannii has been described as an important nosocomial pathogen due to frequent ventilator-associated infections. Many biological processes of A. baumannii remain elusive, such as the formation of an air-liquid biofilm (pellicle). Several studies demonstrated the importance of post-translational modifications (PTMs) in A. baumannii physiology. Here, we investigated K-trimethylation in A. baumannii ATCC 17978 in planktonic and pellicle modes using proteomic analysis. To identify the most high-confidence K-trimethylated peptides, we compared different sample preparation methods (i.e., strong cation exchange, antibody-capture) and processing software (i.e., different database search engines). We identified, for the first time, 84 K-trimethylated proteins, many of which are involved in DNA and protein synthesis (HupB, RplK), transporters (Ata, AdeB), or lipid metabolism processes (FadB, FadD). In comparison with previous studies, several identical lysine residues were observed acetylated or trimethylated, indicating the presence of proteoforms and potential PTM cross-talks. This is the first large-scale proteomic study of trimethylation in A. baumannii and will be an important resource for the scientific community (availability in Pride repository under accession PXD035239).


Asunto(s)
Acinetobacter baumannii , Fenómenos Biológicos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Lisina/metabolismo , Proteómica/métodos , Biopelículas , Proteínas Bacterianas/metabolismo , Antibacterianos
2.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239913

RESUMEN

A series of 6-polyaminosteroid analogues of squalamine were synthesized with moderate to good yields and evaluated for their in vitro antimicrobial properties against both susceptible and resistant Gram-positive (vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus) and Gram-negative (carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa) bacterial strains. Minimum inhibitory concentrations against Gram-positive bacteria ranged from 4 to 16 µg/mL for the most effective compounds, 4k and 4n, and showed an additive or synergistic effect with vancomycin or oxacillin. On the other hand, the derivative 4f, which carries a spermine moiety like that of the natural trodusquemine molecule, was found to be the most active derivative against all the resistant Gram-negative bacteria tested, with an MIC value of 16 µg/mL. Our results suggest that 6-polyaminosteroid analogues of squalamine are interesting candidates for Gram-positive bacterial infection treatments, as well as potent adjuvants to fight Gram-negative bacterial resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Vancomicina/farmacología , Antibacterianos/farmacología , Colestanoles , Bacterias Grampositivas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
3.
Biomacromolecules ; 22(4): 1639-1653, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33709706

RESUMEN

Conventional antibiotic treatment is in most cases insufficient to eradicate biofilm-related infections, resulting in high risk of treatment failure and recurrent infections. Recent studies have shown that novel methods of antibiotic delivery can improve clinical outcomes and reduce the emergence of antibiotic resistance. The objectives of this work were to develop and evaluate a targeting nanocarrier system that enables effective delivery of antimicrobial drugs to Staphylococcus aureus, a commonly virulent human pathogen. For this purpose, we first prepared a formulation of polymeric nanoparticles (NPs) suitable for encapsulation and sustained release of antibiotics. A specific antibody against S. aureus was used as a targeting ligand and was covalently immobilized onto the surface of nanoparticulate materials. It was demonstrated that the targeting NPs preferentially bound S. aureus cells and presented an elevated accumulation in the S. aureus biofilm. Compared to free-form antibiotic, the antibiotic-loaded targeting NPs significantly enhanced in vitro bactericidal activity against S. aureus both in planktonic and biofilm forms. Using a mouse infection model, we observed improved therapeutic efficacy of these antibiotic-loaded NPs after a single intravenous administration. Taken together, our studies show that the targeting nanoparticulate system could be a promising strategy to enhance the biodistribution of antibiotics and thereby improve their efficacy.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Antibacterianos/farmacología , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Distribución Tisular
4.
Anal Bioanal Chem ; 411(30): 8123-8131, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31754767

RESUMEN

Collision cross section (CCS) values are descriptors of the 3D structure of ions which can be determined by ion mobility spectrometry (IMS). Currently, most lipidomic studies involving CCS value determination concern eukaryote samples (e.g. human, bovine) and to a lower extent prokaryote samples (e.g. bacteria). Here, we report CCS values obtained from traveling wave ion mobility spectrometry (TWCCSN2) measurements from the bacterial membrane of Pseudomonas aeruginosa-a bacterium ranked as priority 1 for the R&D of new antibiotics by the World Health Organization. In order to cover the lack of reference compounds which could cover the m/z and CCS ranges of the membrane lipids of P. aeruginosa, three calibrants (polyalanine, dextran and phospholipids) were used for the TWCCSN2 calibration. A shift from the published lipid CCS values was systematically observed (ΔCCS% up to 9%); thus, we proposed a CCS correction strategy. This correction strategy allowed a reduction in the shift (ΔCCS%) between our measurements and published values to less than 2%. This correction was then applied to determine the CCS values of Pseudomonas aeruginosa lipids which have not been published yet. As a result, 32 TWCCSN2 values for [M+H]+ ions and 24 TWCCSN2 values for [M-H]- ions were obtained for four classes of phospholipids (phosphatidylethanolamines (PE), phosphatidylcholines (PC), phosphatidylglycerols (PG) and diphosphatidylglycerols-known as cardiolipins (CL)). Graphical abstract.


Asunto(s)
Cardiolipinas/análisis , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Fosfolípidos/análisis , Calibración
5.
Mol Cell Proteomics ; 16(1): 100-112, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27799293

RESUMEN

For several decades, many bacteria, among which A. baumannii, have shown their ability to colonize the upper surface of static liquids, forming a biofilm at the air-liquid interface named pellicle. Despite the ubiquity of these pellicles in both natural and artificial environments, few studies have investigated this biofilm type. The present data set provides the first description of the whole proteome of A. baumannii cells grown as pellicle, using a label-free mass spectrometry approach. Results are in accord with the general findings reporting that sessile bacteria are far more resistant to detrimental conditions than their planktonic counterparts, by the accumulation of stress proteins. The present investigation also confirmed previous studies suggesting a correlation between the pellicle forming ability and the bacterial virulence. Indeed, we showed the up-regulation of numerous virulence factors during the pellicle growth, e.g. phospholipases, adhesion factors, as well as those of the GacAS Two-Component System (TCS) and Type 6 Secretion System (T6SS). We also highlighted that Bam and Tam systems, both related to the OM insertion machinery, play a critical role during pellicle biogenesis. Moreover, sessile bacteria activate several pathways, e.g. iron, magnesium, phosphate pathways, which allows for increasing the panel of nutrient sources.


Asunto(s)
Acinetobacter baumannii/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteoma/análisis , Proteómica/métodos , Acinetobacter baumannii/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Espectrometría de Masas , Estrés Fisiológico , Regulación hacia Arriba , Factores de Virulencia/metabolismo
6.
J Proteome Res ; 17(7): 2449-2459, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29770699

RESUMEN

Pseudomonas aeruginosa is a multi-drug-resistant human opportunistic pathogen largely involved in nosocomial infections. Unfortunately, effective antibacterial agents are lacking. Exploring its physiology at the post-translational modifications (PTMs) level may contribute to the renewal of combat tactics. Recently, lysine succinylation was discovered in bacteria and seems to be an interesting PTM. We present the first succinylome and acetylome of P. aeruginosa PA14 cultured in the presence of four different carbon sources using a 2D immunoaffinity approach coupled to nanoliquid chromatography tandem mass spectrometry. A total of 1520 succinylated (612 proteins) and 1102 acetylated (522 proteins) lysine residues were characterized. Citrate was the carbon source in which we identified the higher number of modified proteins. Interestingly, 622 lysine residues (312 proteins) were observed either acetylated or succinylated. Some of these proteins, were involved in virulence, adaptation, resistance, and so on. A label-free quantification points out the existence of different protein forms for a same protein (unmodified, succinylated or acetylated) and suggests different abundance as a function of the carbon sources. This work is a promising starting point for further investigations on the biological role of lysine succinylation in P. aeruginosa.


Asunto(s)
Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Pseudomonas aeruginosa/metabolismo , Acetilación , Proteínas Bacterianas/metabolismo , Ácido Cítrico/metabolismo , Ácido Succínico/metabolismo
7.
Rapid Commun Mass Spectrom ; 32(24): 2113-2121, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30171632

RESUMEN

RATIONALE: Pseudomonas aeruginosa is an opportunistic pathogen bacterium widely considered to be an excellent research model in several areas of molecular studies, namely genomics and proteomics. However, its lipid metabolism is still not totally decrypted. While it is known that this bacterium has the particularity to produce phosphatidylcholine, a lipid mainly found in eukaryotes, other singularities are still to be discovered. METHODS: P. aeruginosa was grown as planktonic cultures to the stationary state. Membrane pellets were collected and lipids were extracted using the Bligh and Dyer protocol. Lipid extracts were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS) using high-resolution mass spectrometer (LTQ Orbitrap Elite, Thermo Scientific) in the negative mode. MSn spectra were recorded both in the Orbitrap and in the ion trap analyzer (collision-induced dissociation (CID) or higher energy collision-induced dissociation (HCD) mode). RESULTS: We observed by mass spectrometry and thin layer chromatography that P. aeruginosa produced an unreferenced lipid in classical growth conditions. MS2 analysis of the unknown ion indicates that it is a phosphatidylglycerol derivative. The exact mass shift corresponds to glucosamine which is largely found in the metabolism of this bacterium. MS3 analysis of secondary ions allowed us to conclude that this lipid is a glucosaminylphosphatidylglycerol, a phosphatidylglycerol derivative containing a glucosamine substituted at C4. CONCLUSIONS: We show here that P. aeruginosa is able to produce glucosaminylphosphatidylglycerols via a probable esterification of phosphatidylglycerols by glucosamine.


Asunto(s)
Fosfatidilgliceroles/química , Pseudomonas aeruginosa/química , Cromatografía en Capa Delgada , Esterificación , Glucosamina/química , Glucosamina/metabolismo , Estructura Molecular , Fosfatidilgliceroles/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
8.
Int J Mol Sci ; 19(1)2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29320462

RESUMEN

The increasing threat of Acinetobacter baumannii as a nosocomial pathogen is mainly due to the occurrence of multidrug-resistant strains that are associated with the real problem of its eradication from hospital wards. The particular ability of this pathogen to form biofilms contributes to its persistence, increases antibiotic resistance, and promotes persistent/device-related infections. We previously demonstrated that virstatin, which is a small organic compound known to decrease virulence of Vibrio cholera via an inhibition of T4-pili expression, displayed very promising activity to prevent A. baumannii biofilm development. Here, we examined the antibiofilm activity of mono-unsaturated chain fatty acids, palmitoleic (PoA), and myristoleic (MoA) acids, presenting similar action on V. cholerae virulence. We demonstrated that PoA and MoA (at 0.02 mg/mL) were able to decrease A. baumannii ATCC 17978 biofilm formation up to 38% and 24%, respectively, presented a biofilm dispersing effect and drastically reduced motility. We highlighted that these fatty acids decreased the expression of the regulator abaR from the LuxIR-type quorum sensing (QS) communication system AbaIR and consequently reduced the N-acyl-homoserine lactone production (AHL). This effect can be countered by addition of exogenous AHLs. Besides, fatty acids may have additional non-targeted effects, independent from QS. Atomic force microscopy experiments probed indeed that PoA and MoA could also act on the initial adhesion process in modifying the material interface properties. Evaluation of fatty acids effect on 22 clinical isolates showed a strain-dependent antibiofilm activity, which was not correlated to hydrophobicity or pellicle formation ability of the tested strains, and suggested a real diversity in cell-to-cell communication systems involved in A. baumannii biofilm formation.


Asunto(s)
Acinetobacter baumannii/fisiología , Biopelículas/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Percepción de Quorum/efectos de los fármacos , Acil-Butirolactonas/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Microscopía de Fuerza Atómica
9.
Biochim Biophys Acta ; 1861(8 Pt A): 703-14, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27126915

RESUMEN

For optimal growth of a microorganism, the pH of the culture medium should be set at an optimum value. For that reason, growth media require buffering agents. We show in this study that, when grown in a medium supplemented with tris(hydroxymethyl)aminomethane (Tris), Pseudomonas aeruginosa is able to use this organic compound to produce new phospholipids. We thus pointed out that phosphatidyltris(hydroxymethyl)aminomethane as well as diphosphatidyltris(hydroxymethyl)aminomethane was detected in membrane lipid extracts of bacteria grown in Tris-buffered medium. Moreover, the amounts of lysoglycerophospholipids in the lipidome of P. aeruginosa grown in Tris-buffered medium increased leading to the presence of lysophosphatidylglycerol and lysophosphatidyltris(hydroxymethyl)aminomethane as well as other lysophospholipid derivatives. Finally, we investigated the effect of the presence of these exogenous phospholipids on the susceptibility of P. aeruginosa to some antibiotics. We observed a decrease of the minimal inhibitory concentrations of different antibiotic families, i.e., fluoroquinolones, aminoglycosides, ß-lactams and polymyxins, proving the importance of the buffer choice for growth medium and its impact on the lipidome.


Asunto(s)
Medios de Cultivo/química , Metilaminas/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Trometamina/química
10.
Biomacromolecules ; 18(10): 3238-3251, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28745896

RESUMEN

Aminoguaiacol, the aminated derivative of guaiacol, a natural phenolic compound, was chemically grafted onto a polysaccharide (carboxymethylpullulan, CMP) in the presence of the activator agent 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDCI). The grafted polysaccharides were characterized by FTIR and 1H NMR spectroscopy to confirm and quantify the grafting. All polysaccharide derivatives (grafting rates of aminoguaiacol between 16% and 58%) were soluble in water. Their physicochemical properties were studied in a dilute regime and a semidilute regime by light scattering, fluorescence, and rheology, showing associative properties with peculiar polysoap behavior. The antibacterial activities of the synthesized products against Staphyloccocus aureus were assessed using a counting method. The antioxidant activities of the derivatives were also highlighted using the α,α-diphenyl-ß-picrylhydrazyl (DPPH) method. Finally, the cytotoxicity of the derivatives was studied with fibroblast cells and they showed a very good cytocompatibility. Such polymers could be used to replace chemical preservatives in food and cosmetic aqueous formulations.


Asunto(s)
Antibacterianos/síntesis química , Antioxidantes/síntesis química , Glucanos/química , Guayacol/análogos & derivados , Aminas/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ratones , Staphylococcus aureus/efectos de los fármacos
11.
Can J Microbiol ; 62(4): 338-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26928316

RESUMEN

The present study investigated the adaptation of Salmonella enterica subsp. enterica serovar Hadar to static magnetic field (SMF) exposure (200 mT, 9 h). The proteomic analysis provides an overview of potentially important cytosolic proteins that Salmonella needs to regulate to survive and adapt to magnetic stress. Via 2-dimensional electrophoresis and liquid chromatography tandem mass spectrometry, we compared cytosolic proteomes before and after exposure to magnetic field. A total of 35 proteins displaying more than a 2-fold change were differentially expressed in exposed cells, among which 25 were upregulated and 10 were downregulated. These proteins can be classified mainly into 6 categories: (i) proteins involved in metabolic pathways of carbohydrates, (ii) chaperones and proteins produced in response to oxidative stress, (iii) proteins involved in energy homeostasis, (iv) elongation factors (EF-Tu and EF-Ts), (v) proteins involved in motility, and (vi) proteins involved in molecules transport. Many of the presented observations could be explained, while some represent still-unknown mechanisms. In addition, this study reveals 5 hypothetical proteins. It seems that the stress response to SMF (200 mT) is essentially set up to avoid oxidative damages, with the overexpression of proteins directly involved in oxidative stress response and metabolic switches to counteract oxidative stress. Interestingly, several proteins induced under SMF exposure are found to overlap with those induced by other stresses, such as heat shock and starvation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteoma/metabolismo , Salmonella enterica/metabolismo , Adaptación Fisiológica , Citosol/metabolismo , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , Campos Magnéticos , Redes y Vías Metabólicas , Chaperonas Moleculares/metabolismo , Factores de Elongación de Péptidos/metabolismo , Proteómica
12.
Antimicrob Agents Chemother ; 60(3): 1892-5, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26666921

RESUMEN

In two pairs of clinical colistin-susceptible/colistin-resistant (Cst(s)/Cst(r)) Acinetobacter baumannii strains, the Cst(r) strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Cst(s) counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cst(r) strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Adhesión Bacteriana/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Humanos , Lipopolisacáridos/biosíntesis , Manosiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Porinas/genética
13.
Anal Bioanal Chem ; 407(5): 1513-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25471289

RESUMEN

Most often, the use of ProteoMiner beads has been restricted to human serum proteins for the normalization of major proteins, such as albumin. However, there are other situations of interest in which the presence of major proteins would quench the signals of low abundance polypeptides. We propose the use of these beads for investigating the envelope of the gram-negative bacterium Pseudomonas aeruginosa. Initially, we performed comparative 2D electrophoresis to qualitatively evaluate the incidence of the normalization stage. This demonstrated a significant reduction of the major membrane proteins. Thereafter, using shotgun analysis, the same protein extract was targeted by using combinatorial peptide ligand library capture. This treatment yielded 154 additional outer membrane proteins (OMPs) uncovered by the study of the crude sample.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Pseudomonas aeruginosa/genética , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/metabolismo , Electroforesis en Gel Bidimensional , Biblioteca de Péptidos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo
14.
Antimicrob Agents Chemother ; 58(2): 828-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24247145

RESUMEN

Two colistin-susceptible/colistin-resistant (Col(s)/Col(r)) pairs of Acinetobacter baumannii strains assigned to international clone 2, which is prevalent worldwide, were sequentially recovered from two patients after prolonged colistin administration. Compared with the respective Col(s) isolates (Ab248 and Ab299, both having a colistin MIC of 0.5 µg/ml), both Col(r) isolates (Ab249 and Ab347, with colistin MICs of 128 and 32 µg/ml, respectively) significantly overexpressed pmrCAB genes, had single-amino-acid shifts in the PmrB protein, and exhibited significantly slower growth. The Col(r) isolate Ab347, tested by proteomic analysis in comparison with its Col(s) counterpart Ab299, underexpressed the proteins CsuA/B and C from the csu operon (which is necessary for biofilm formation). This isolate also underexpressed aconitase B and different enzymes involved in the oxidative stress response (KatE catalase, superoxide dismutase, and alkyl hydroperoxide reductase), suggesting a reduced response to reactive oxygen species (ROS) and, consequently, impaired colistin-mediated cell death through hydroxyl radical production. Col(s) isolates that were indistinguishable by macrorestriction analysis from Ab299 caused six sequential bloodstream infections, and isolates indistinguishable from Ab248 caused severe soft tissue infection, while Col(r) isolates indistinguishable from Ab347 and Ab249 were mainly colonizers. In particular, a Col(s) isolate identical to Ab299 was still invading the bloodstream 90 days after the colonization of this patient by Col(r) isolates. These observations indicate considerably lower invasiveness of A. baumannii clinical isolates following the development of colistin resistance.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/patogenicidad , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Anciano , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Células Clonales , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Persona de Mediana Edad , Operón , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
15.
BMC Microbiol ; 14: 62, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24621315

RESUMEN

BACKGROUND: Acinetobacter baumannii has emerged as an opportunistic nosocomial pathogen causing infections worldwide. One reason for this emergence is due to its natural ability to survive in the hospital environment, which may be explained by its capacity to form biofilms. Cell surface appendages are important determinants of the A. baumannii biofilm formation and as such constitute interesting targets to prevent the development of biofilm-related infections. A chemical agent called virstatin was recently described to impair the virulence of Vibrio cholerae by preventing the expression of its virulence factor, the toxin coregulated pilus (type IV pilus). The objective of this work was to investigate the potential effect of virstatin on A. baumannii biofilms. RESULTS: After a dose-response experiment, we determined that 100 µM virstatin led to an important decrease (38%) of biofilms formed by A. baumannii ATCC17978 grown under static mode. We demonstrated that the production of biofilms grown under dynamic mode was also delayed and reduced. The biofilm susceptibility to virstatin was then tested for 40 clinical and reference A. baumannii strains. 70% of the strains were susceptible to virstatin (with a decrease of 10 to 65%) when biofilms grew in static mode, whereas 60% of strains respond to the treatment when their biofilms grew in dynamic mode. As expected, motility and atomic force microscopy experiments showed that virstatin acts on the A. baumannii pili biogenesis. CONCLUSIONS: By its action on pili biogenesis, virstatin demonstrated a very promising antibiofilm activity affecting more than 70% of the A. baumannii clinical isolates.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/fisiología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Butiratos/farmacología , Locomoción/efectos de los fármacos , Naftalimidas/farmacología , Fimbrias Bacterianas/efectos de los fármacos , Microscopía de Fuerza Atómica
16.
Antibiotics (Basel) ; 12(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37370385

RESUMEN

The poor bioavailability of antibiotics at infection sites is one of the leading causes of treatment failure and increased bacterial resistance. Therefore, developing novel, non-conventional antibiotic delivery strategies to deal with bacterial pathogens is essential. Here, we investigated the encapsulation of two fluoroquinolones, ciprofloxacin and levofloxacin, into polymer-based nano-carriers (nano-antibiotics), with the goal of increasing their local bioavailability at bacterial infection sites. The formulations were optimized to achieve maximal drug loading. The surfaces of nano-antibiotics were modified with anti-staphylococcal antibodies as ligand molecules to target S. aureus pathogens. The interaction of nano-antibiotics with the bacterial cells was investigated via fluorescent confocal microscopy. Conventional tests (MIC and MBC) were used to examine the antibacterial properties of nano-antibiotic formulations. Simultaneously, a bioluminescence assay model was employed, revealing the rapid and efficient assessment of the antibacterial potency of colloidal systems. In comparison to the free-form antibiotic, the targeted nano-antibiotic exhibited enhanced antimicrobial activity against both the planktonic and biofilm forms of S. aureus. Furthermore, our data suggested that the efficacy of a targeted nano-antibiotic treatment can be influenced by its antibiotic release profile.

17.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275318

RESUMEN

The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.

18.
Antimicrob Agents Chemother ; 56(7): 3826-32, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22564848

RESUMEN

The increasing number of carbapenem-resistant Acinetobacter baumannii isolates is a major cause for concern which restricts therapeutic options to treat severe infections caused by this emerging pathogen. To identify the molecular mechanisms involved in carbapenem resistance, we studied the contribution of an outer membrane protein homologue of the Pseudomonas aeruginosa OprD porin. Suspected to be the preferred pathway of carbapenems in A. baumannii, the oprD homologue gene was inactivated in strain ATCC 17978. Comparison of wild-type and mutant strains did not confirm the expected increased resistance to any antibiotic tested. OprD homologue sequence analysis revealed that this protein actually belongs to an OprD subgroup but is closer to the P. aeruginosa OprQ protein, with which it could share some functions, e.g., allowing bacterial survival under low-iron or -magnesium growth conditions or under poor oxygenation. We thus overexpressed and purified a recombinant OprD homologue protein to further examine its functional properties. As a specific channel, this porin presented rather low single-channel conductance, i.e., 28 pS in 1 M KCl, and was partially closed by micro- and millimolar concentrations of Fe(3+) and Mg(2+), respectively, but not by imipenem and meropenem or basic amino acids. The A. baumannii OprD homologue is likely not involved in the carbapenem resistance mechanism, but as an OprQ-like protein, it could contribute to the adaptation of this bacterium to magnesium- and/or iron-depleted environments.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Bleomicina/farmacología , Kanamicina/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Proteome Sci ; 10(1): 6, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304719

RESUMEN

BACKGROUND: Salmonella enterica serovar Hadar (S. Hadar) is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments. RESULTS: The present study investigated the adaptation of S. Hadar under the effect of acute static magnetic field exposure (200 mT, 9 h) and the impact on the outer membrane protein pattern. Via two-dimensional electrophoresis (2-DE) and LC-MS/MS spectrometry, we compared the proteome of enriched-outer membrane fraction before and after exposure to a magnetic field. A total of 11 proteins, displaying more than a two-fold change, were differentially expressed in exposed cells, among which 7 were up-regulated and 4 down-regulated. These proteins were involved in the integrity of cell envelope (TolB, Pal), in the response to oxidative stress (OmpW, dihydrolipoamide dehydrogenase, UspF), in the oxidative stress status (bacterioferritin), in virulence (OmpX, Yfgl) or in motility (FlgE and UspF). Complementary experiments associated the down-regulation of FlgE and UspF with an alteration of swarming, a flagella-driven motility, under SMF. Furthermore, the antibiotic disc diffusion method confirmed a decrease of gentamicin susceptibility in exposed cells. This decrease could be partly associated with the up-regulation of TolC, outer membrane component of an efflux pump. OmpA, a multifunctional protein, was up-regulated. CONCLUSIONS: SMF (200 mT) seems to maintain the cell envelope integrity and to submit the exposed cells to an oxidative stress. Some alterations suggest an increase of the ability of exposed cells to form biofilms.

20.
J Antimicrob Chemother ; 66(9): 2053-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21705362

RESUMEN

OBJECTIVES: In the context of the increasing worldwide occurrence of imipenem-resistant Acinetobacter baumannii strains, we investigated a possible porin-mediated mechanism relating to the carbapenem resistance-associated outer membrane protein, CarO. The aim of this study was to determine whether this porin may be a diffusion pathway for carbapenems in A. baumannii. METHODS: By analysing and comparing the sequences of CarO with protein databanks, we identified two major groups of sequences that we named CarOa and CarOb. We overproduced in Escherichia coli, extracted, purified by affinity chromatography and refolded in Triton X-100 rCarO from both groups. Their functional properties were investigated and compared by reconstitution in planar lipid bilayers. RESULTS: This functional study showed that rCarOa and rCarOb exhibit identical single-channel conductances (i.e. 20 pS in 1 M KCl) and similar poor cationic selectivity. Both channels were not specific towards meropenem and glutamic acid and poorly specific towards arginine, but they presented a marked specificity towards imipenem. From the calculated binding constants, we highlight that the CarOb channel was twice as specific as the CarOa channel for this antibiotic. Moreover, the CarOa channel could facilitate ornithine diffusion when the CarOb channel would not. CONCLUSIONS: We provide here the first evidence that CarO channels possess an imipenem (but not meropenem) binding site, and that their specificities depend on their primary structure. Any decrease in CarO expression would thus reduce the susceptibility of A. baumannii to this antibiotic.


Asunto(s)
Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana/fisiología , Porinas/genética , Acinetobacter baumannii/efectos de los fármacos , Algoritmos , Proteínas de la Membrana Bacteriana Externa/genética , Sitios de Unión/efectos de los fármacos , Clonación Molecular , Bases de Datos Genéticas , Escherichia coli/metabolismo , Imipenem/farmacología , Ionóforos/química , Membrana Dobles de Lípidos , Pliegue de Proteína , Proteínas Recombinantes/química , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA