Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2216786120, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897985

RESUMEN

Although thin films are typically manufactured in planar sheets or rolls, they are often forced into three-dimensional (3D) shapes, producing a plethora of structures across multiple length scales. To understand this complex response, previous studies have either focused on the overall gross shape or the small-scale buckling that decorates it. A geometric model, which considers the sheet as inextensible yet free to compress, has been shown to capture the gross shape of the sheet. However, the precise meaning of such predictions, and how the gross shape constrains the fine features, remains unclear. Here, we study a thin-membraned balloon as a prototypical system that involves a doubly curved gross shape with large amplitude undulations. By probing its side profiles and horizontal cross-sections, we discover that the mean behavior of the film is the physical observable that is predicted by the geometric model, even when the buckled structures atop it are large. We then propose a minimal model for the horizontal cross-sections of the balloon, as independent elastic filaments subjected to an effective pinning potential around the mean shape. Despite the simplicity of our model, it reproduces a broad range of phenomena seen in the experiments, from how the morphology changes with pressure to the detailed shape of the wrinkles and folds. Our results establish a route to combine global and local features consistently over an enclosed surface, which could aid the design of inflatable structures, or provide insight into biological patterns.

2.
Proc Natl Acad Sci U S A ; 120(12): e2212290120, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36930601

RESUMEN

Everyday experience confirms the tendency of adhesive films to detach from spheroidal regions of rigid substrates-what is a petty frustration when placing a sticky band aid onto a knee is a more serious matter in the coating and painting industries. Irrespective of their resistance to bending, a key driver of such phenomena is Gauss' Theorema Egregium, which implies that naturally flat sheets cannot conform to doubly curved surfaces without developing a strain whose magnitude grows sharply with the curved area. Previous attempts to characterize the onset of curvature-induced delamination, and the complex patterns it gives rise to, assumed a dewetting-like mechanism in which the propensity of two materials to form contact through interfacial energy is modified by an elastic energy penalty. We show that this approach may characterize moderately bendable sheets but fails qualitatively to describe the curvature-induced delamination of ultrathin films, whose mechanics is governed by their propensity to buckle and delaminate partially, under minute levels of compression. Combining mechanical and geometrical considerations, we introduce a minimal model for curvature-induced delamination accounting for the two buckling motifs that underlie partial delamination: shallow "rucks" and localized "folds". We predict nontrivial scaling rules for the onset of curvature-induced delamination and various features of the emerging patterns, which compare well with experiments. Beyond gaining control on the use of ultrathin adhesives in cutting-edge technologies such as stretchable electronics, our analysis is a significant step toward quantifying the multiscale morphology that emerges upon imposing geometrical and mechanical constraints on highly bendable solid objects.

3.
Phys Rev Lett ; 127(10): 108002, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533328

RESUMEN

Thin elastic films can spontaneously attach to liquid interfaces, offering a platform for tailoring their physical, chemical, and optical properties. Current understanding of the elastocapillarity of thin films is based primarily on studies of planar sheets. We show that curved shells can be used to manipulate interfaces in qualitatively different ways. We elucidate a regime where an ultrathin shell with vanishing bending rigidity imposes its own rest shape on a liquid surface, using experiment and theory. Conceptually, the pressure across the interface "inflates" the shell into its original shape. The setup is amenable to optical applications as the shell is transparent, free of wrinkles, and may be manufactured over a range of curvatures.

4.
Eur Phys J E Soft Matter ; 44(2): 11, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33683490

RESUMEN

We revisit the delamination of a solid adhesive sheet under uniaxial compression from a flat, rigid substrate. Using energetic considerations and scaling arguments, we show that the phenomenology is governed by three dimensionless groups, which characterize the level of confinement imposed on the sheet, as well as its extensibility and bendability. Recognizing that delamination emerges through a subcritical bifurcation from a planar, uniformly compressed state, we predict that the dependence of the threshold confinement level on the extensibility and bendability of the sheet, as well as the delaminated shape at threshold, varies markedly between two asymptotic regimes of these parameters. For sheets whose bendability is sufficiently high, the delaminated shape is a large-slope "fold," where the amplitude is proportional to the imposed confinement. In contrast, for lower values of the bendability parameter, the delaminated shape is a small-slope "ruck," whose amplitude increases more moderately upon increasing confinement. Realizing that the instability of the fully laminated state requires a finite extensibility of the sheet, we introduce a simple model that allows us to construct a bifurcation diagram that governs the delamination process.

5.
Soft Matter ; 16(32): 7503-7512, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32725023

RESUMEN

Swimming microorganisms interact and alter the dynamics of Brownian particles and tend to modify their transport properties. In particular, dilute colloids coupled to a bath of swimming cells generically display enhanced diffusion on long time scales. This transport dynamics stems from a subtle interplay between the active and passive particles that still resists our understanding despite decades of intense research. Here, we tackle the root of the problem by providing a quantitative characterisation of the single scattering events between a colloid and a bacterium, a smooth running E. coli. Based on our experiments, we build a minimal model that quantitatively predicts the geometry of the scattering trajectories, and enhanced colloidal diffusion at long times. This quantitative confrontation between theory and experiments elucidates the microscopic origin of enhanced transport. Collisions are solely ruled by stochastic contact interactions and the ratio of the drag coefficients of the colloid and the bacteria. Such description accounts both for genuine anomalous diffusion at short times and enhanced diffusion at long times with no ballistic regime at any scale.


Asunto(s)
Coloides , Escherichia coli , Difusión , Suspensiones , Natación
6.
Soft Matter ; 16(17): 4121-4130, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32255145

RESUMEN

A basic paradigm underlying the Hookean mechanics of amorphous, isotropic solids is that small deformations are proportional to the magnitude of external forces. However, slender bodies may undergo large deformations even under minute forces, leading to nonlinear responses rooted in purely geometric effects. Here we study the indentation of a polymer film on a liquid bath. Our experiments and simulations support a recently-predicted stiffening response [D. Vella and B. Davidovitch, Phys. Rev. E, 2018, 98, 013003], and we show that the system softens at large slopes, in agreement with our theory that addresses small and large deflections. We show how stiffening and softening emanate from nontrivial yet generic features of the stress and displacement fields.

7.
Phys Rev Lett ; 122(6): 068002, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822074

RESUMEN

The dynamics of an active walker in a harmonic potential is studied experimentally, numerically, and theoretically. At odds with usual models of self-propelled particles, we identify two dynamical states for which the particle condensates at a finite distance from the trap center. In the first state, also found in other systems, the particle points radially outward from the trap, while diffusing along the azimuthal direction. In the second state, the particle performs circular orbits around the center of the trap. We show that self-alignment, taking the form of a torque coupling the particle orientation and velocity, is responsible for the emergence of this second dynamical state. The transition between the two states is controlled by the persistence of the particle orientation. At low inertia, the transition is continuous. For large inertia, the transition is discontinuous and a coexistence regime with intermittent dynamics develops. The two states survive in the overdamped limit or when the particle is confined by a curved hard wall.

8.
Phys Rev Lett ; 122(8): 085501, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30932603

RESUMEN

The Mohr-Coulomb criterion is widely used in geosciences and solid mechanics to relate the state of stress at failure to the observed orientation of the resulting faults. This relation is based on the assumption that macroscopic failure takes place along the plane that maximizes the Coulomb stress. Here, this hypothesis is assessed by simulating compressive tests on an elastodamageable material that follows the Mohr-Coulomb criterion at the mesoscopic scale. We find that the macroscopic fault orientation is not given by the Mohr-Coulomb criterion. Instead, for a weakly disordered material, it corresponds to the most unstable mode of damage growth, which we determine through a linear stability analysis of its homogeneously damaged state. Our study reveals that compressive failure emerges from the coalescence of damaged clusters within the material and that this collective process is suitably described at the continuum scale by introducing an elastic kernel that describes the interactions between these clusters.

9.
Syst Biol ; 67(2): 304-319, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029264

RESUMEN

The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models. The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely used in statistical mechanics: the Fokker-Planck equation, also known in population genetics as the Kolmogorov forward equation. We thus call the model FPK, for Fokker-Planck-Kolmogorov. We first explain how this model can be used to describe macroevolutionary landscapes over which quantitative traits evolve and, more importantly, we detail how it can be fitted to empirical data. Using simulations, we show that the model has good behavior both in terms of discrimination from alternative models and in terms of parameter inference. We provide R code to fit the model to empirical data using either maximum-likelihood or Bayesian estimation, and illustrate the use of this code with two empirical examples of body mass evolution in mammals. FPK should greatly expand the set of macroevolutionary scenarios that can be studied since it opens the way to estimating macroevolutionary landscapes of any conceivable shape. [Adaptation; bounds; diffusion; FPK model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection.].


Asunto(s)
Evolución Biológica , Clasificación/métodos , Modelos Biológicos , Filogenia , Programas Informáticos
10.
Phys Rev Lett ; 120(7): 070601, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29542950

RESUMEN

Single-file transport, arising in quasi-one-dimensional geometries where particles cannot pass each other, is characterized by the anomalous dynamics of a probe, notably its response to an external force. In these systems, the motion of several probes submitted to different external forces, although relevant to mixtures of charged and neutral or active and passive objects, remains unexplored. Here, we determine how several probes respond to external forces. We rely on a hydrodynamic description of the symmetric exclusion process to obtain exact analytical results at long times. We show that the probes can either move as a whole, or separate into two groups moving away from each other. In between the two regimes, they separate with a different dynamical exponent, as t^{1/4}. This unbinding transition also occurs in several continuous single-file systems and is expected to be observable.

11.
J Chem Phys ; 148(8): 084503, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495772

RESUMEN

Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.

12.
Phys Rev Lett ; 118(11): 118002, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368633

RESUMEN

When two populations of "particles" move in opposite directions, like oppositely charged colloids under an electric field or intersecting flows of pedestrians, they can move collectively, forming lanes along their direction of motion. The nature of this "laning transition" is still being debated and, in particular, the pair correlation functions, which are the key observables to quantify this phenomenon, have not been characterized yet. Here, we determine the correlations using an analytical approach based on a linearization of the stochastic equations for the density fields, which is valid for dense systems of soft particles. We find that the correlations decay algebraically along the direction of motion, and have a self-similar exponential profile in the transverse direction. Brownian dynamics simulations confirm our theoretical predictions and show that they also hold beyond the validity range of our analytical approach, pointing to a universal behavior.

13.
Phys Rev Lett ; 118(4): 048004, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28186795

RESUMEN

Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the observed buckling transitions between wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.

14.
Syst Biol ; 65(4): 651-61, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26865274

RESUMEN

Our understanding of phenotypic evolution over macroevolutionary timescales largely relies on the use of stochastic models for the evolution of continuous traits over phylogenies. The two most widely used models, Brownian motion and the Ornstein-Uhlenbeck (OU) process, differ in that the latter includes constraints on the variance that a trait can attain in a clade. The OU model explicitly models adaptive evolution toward a trait optimum and has thus been widely used to demonstrate the existence of stabilizing selection on a trait. Here we introduce a new model for the evolution of continuous characters on phylogenies: Brownian motion between two reflective bounds, or Bounded Brownian Motion (BBM). This process also models evolutionary constraints, but of a very different kind. We provide analytical expressions for the likelihood of BBM and present a method to calculate the likelihood numerically, as well as the associated R code. Numerical simulations show that BBM achieves good performance: parameter estimation is generally accurate but more importantly BBM can be very easily discriminated from both BM and OU. We then analyze climatic niche evolution in diprotodonts and find that BBM best fits this empirical data set, suggesting that the climatic niches of diprotodonts are bounded by the climate available in Australia and the neighboring islands but probably evolved with little additional constraints. We conclude that BBM is a valuable addition to the macroevolutionary toolbox, which should enable researchers to elucidate whether the phenotypic traits they study are evolving under hard constraints between bounds.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Fenotipo , Filogenia , Animales , Australia , Marsupiales/clasificación
15.
Nat Mater ; 14(12): 1206-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26322716

RESUMEN

Elastic sheets offer a path to encapsulating a droplet of one fluid in another that is different from that of traditional molecular or particulate surfactants. In wrappings of fluids by sheets of moderate thickness with petals designed to curl into closed shapes, capillarity balances bending forces. Here, we show that, by using much thinner sheets, the constraints of this balance can be lifted to access a regime of high sheet bendability that brings three major advantages: ultrathin sheets automatically achieve optimally efficient shapes that maximize the enclosed volume of liquid for a fixed area of sheet; interfacial energies and mechanical properties of the sheet are irrelevant within this regime, thus allowing for further functionality; and complete coverage of the fluid can be achieved without special sheet designs. We propose and validate a general geometric model that captures the entire range of this new class of wrapped and partially wrapped shapes.

16.
Phys Rev Lett ; 117(10): 104301, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636477

RESUMEN

Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures.

17.
Soft Matter ; 11(25): 4999-5003, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26001210

RESUMEN

The angle of contact between a solid surface and a fluid interface plays a key role in wetting and is therefore a focus in studies of a wide range of natural phenomena and fluidic technologies. The contact angle ranges between two values, a maximum (advancing) angle and a minimum (receding) angle. These limiting angles are thought to be properties of the fluids and of the chemistry or topography of the solid. By contrast, we find that the value of the receding angle can be significantly reduced by altering the interface shape. Using millimeter-sized spheres coated with polydimethylsiloxane and pulled through an air-water interface, we observe that the receding angle decreases from 101 ± 1° at a planar interface to as low as 80 ± 1° at saddle- or cylinder-shaped interfaces. The angle decreases smoothly with the deviatoric curvature of the interface (a measure of the shape anisotropy) and is linked to a non-circular contact line.

18.
Phys Rev E ; 109(2-1): 024606, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491601

RESUMEN

Collective actuation describes the spontaneous synchronized oscillations taking place in active solids when the elasto-active feedback, which generically couples the reorientation of the active forces and the elastic stress, is large enough. In the absence of noise, collective actuation takes the form of a strong condensation of the dynamics on a specific pair of modes and their generalized harmonics. Here we report experiments conducted with centimetric active elastic structures, where collective oscillation takes place along the single lowest energy mode of the system, gapped from the other modes because of the system's geometry. Combining the numerical and theoretical analysis of an agent-based model, we demonstrate that this form of collective actuation is noise-induced. The effect of the noise is first analyzed in a single-particle toy model that reveals the interplay between the noise and the specific structure of the phase space. We then show that in the continuous limit, any finite amount of noise turns this new form of transition to collective actuation into a bona fide supercritical Hopf bifurcation.

19.
Phys Rev E ; 108(4-1): 044604, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978697

RESUMEN

The motion of a colloidal probe in a complex fluid, such as a micellar solution, is usually described by the generalized Langevin equation, which is linear. However, recent numerical simulations and experiments have shown that this linear model fails when the probe is confined and that the intrinsic dynamics of the probe is actually nonlinear. Noting that the kurtosis of the displacement of the probe may reveal the nonlinearity of its dynamics also in the absence confinement, we compute it for a probe coupled to a Gaussian field and possibly trapped by a harmonic potential. We show that the excess kurtosis increases from zero at short times, reaches a maximum, and then decays algebraically at long times, with an exponent which depends on the spatial dimensionality and on the features and correlations of the dynamics of the field. Our analytical predictions are confirmed by numerical simulations of the stochastic dynamics of the probe and the field where the latter is represented by a finite number of modes.

20.
Phys Rev E ; 108(5-1): 054606, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115513

RESUMEN

We study the diffusivity of a tagged particle in a binary mixture of Brownian particles with nonreciprocal interactions. Numerical simulations reveal that, for a broad class of interaction potentials, nonreciprocity can significantly increase the long-time diffusion coefficient of tracer particles and that this diffusion enhancement is associated with a breakdown of the Einstein relation. These observations are quantified and confirmed via two different and complementary analytical approaches: (i) a linearized stochastic density field theory, which is particularly accurate in the limit of soft interactions, and (ii) a reduced two-body description, which is exact at leading order in the density of particles. The latter reveals that diffusion enhancement can be attributed to the formation of transiently propelled dimers of particles, whose cohesion and speed are controlled by the nonreciprocal interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA