Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Vet Res ; 55(1): 18, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351086

RESUMEN

Although cattle are the mammalian species with most global biomass associated with a huge impact on our planet, their immune system remains poorly understood. Notably, the bovine immune system has peculiarities such as an overrepresentation of γδ T cells that requires particular attention, specifically in an infectious context. In line of 3R principles, we developed an ex vivo platform to dissect host-pathogen interactions. The experimental design was based on two independent complementary readouts: firstly, a novel 12-14 color multiparameter flow cytometry assay measuring maturation (modulation of cell surface marker expression) and activation (intracellular cytokine detection) of monocytes, conventional and plasmacytoid dendritic cells, natural killer cells, γδ T cells, B and T cells; secondly, a multiplex immunoassay monitoring bovine chemokine and cytokine secretion levels. The experiments were conducted on fresh primary bovine blood cells exposed to Mycoplasmopsis bovis (M. bovis), a major bovine respiratory pathogen. Besides reaffirming the tight cooperation of the different primary blood cells, we also identified novel key players such as strong IFN-γ secreting NK cells, whose role was so far largely overlooked. Additionally, we compared the host-pathogen interactions at different temperatures, including commonly used 37 °C, ruminant body temperature (38-38.5 °C) and fever (≥ 39.5 °C). Strikingly, working under ruminant physiological temperature influenced the capacity of most immune cell subsets to respond to M. bovis compared to 37 °C. Under fever-like temperature conditions the immune response was impaired compared to physiological temperature. Our experimental approach, phenotypically delineating the bovine immune system provided a thorough vision of the immune response towards M. bovis and the influence of temperature towards that immune response.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium bovis , Tuberculosis Bovina , Animales , Bovinos , Temperatura , Citocinas/metabolismo , Activación de Linfocitos , Rumiantes/metabolismo
2.
PLoS Pathog ; 17(4): e1009529, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33909707

RESUMEN

The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the properties of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a translational model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4+ and CD8+ T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity.


Asunto(s)
Pulmón/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones del Sistema Respiratorio/inmunología , Linfocitos T/patología , Animales , Animales Recién Nacidos , Diferenciación Celular/inmunología , Células Cultivadas , Preescolar , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Infecciones por Virus Sincitial Respiratorio/congénito , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones del Sistema Respiratorio/congénito , Infecciones del Sistema Respiratorio/patología , Ovinos/crecimiento & desarrollo , Ovinos/inmunología , Linfocitos T/inmunología , Linfocitos T/fisiología
3.
PLoS Pathog ; 17(7): e1009789, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34320038

RESUMEN

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/virología , Pulmón/inmunología , Células Madre Mesenquimatosas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Animales , Humanos , Pulmón/citología , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Ovinos
4.
Nanomedicine ; 49: 102655, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681171

RESUMEN

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Asunto(s)
Enfermedades Transmisibles , ARN , Porcinos , Ratones , Animales , ARN/genética , Antígenos , Enfermedades Transmisibles/genética , Replicón/genética
5.
PLoS Pathog ; 10(1): e1003915, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497833

RESUMEN

IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα(+) pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα(+) cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα(-) production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67(+)-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67(+)-pDC precursors, none of these being IFNα(+) in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors.


Asunto(s)
Células Dendríticas/inmunología , Células Plasmáticas/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Células Dendríticas/patología , Interferón-alfa/inmunología , Ganglios Linfáticos/inmunología , Macaca fascicularis , Células Plasmáticas/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/inmunología
6.
J Immunol ; 193(1): 364-71, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899499

RESUMEN

Cathelicidins constitute potent antimicrobial peptides characterized by a high cationic charge that enables strong interactions with nucleic acids. In fact, the only human cathelicidin LL-37 triggers rapid sensing of nucleic acids by plasmacytoid dendritic cells (pDC). Among the porcine cathelicidins, phylogenetic analysis of the C-terminal mature peptide showed that porcine myeloid antimicrobial peptide (PMAP)-36 was the most closely related of the 11 porcine cathelicidins to human LL-37. Despite several investigations evaluating potent antimicrobial functions of porcine cathelicidins, nothing is known about their ability to promote pDC activation. We therefore investigated the capacity of the proline-arginine-rich 39-aa peptide, PMAP-23, PMAP-36, and protegrin-1 to complex with bacterial DNA or synthetic RNA molecules and facilitate pDC activation. We demonstrate that these peptides mediate a rapid and efficient uptake of nucleic acids within minutes, followed by robust IFN-α responses. The highest positively charged cathelicidin, PMAP-36, was found to be the most potent peptide tested for this effect. The peptide-DNA complexes were internalized and also found to associate with the cell membranes of pDC. The amphipathic conformation typical of PMAP-36 was not required for IFN-α induction in pDC. We also demonstrate that PMAP-36 can mediate IFN-α induction in pDC stimulated by Escherichia coli, which alone fail to activate pDC. This response was weaker with a scrambled PMAP-36, relating to its lower antimicrobial activity. Collectively, our data suggest that the antimicrobial and nucleic acid-complexing properties of cathelicidins can mediate pDC activation-promoting adaptive immune responses against microbial infections.


Asunto(s)
Inmunidad Adaptativa , Péptidos Catiónicos Antimicrobianos/inmunología , Infecciones Bacterianas/inmunología , ADN Bacteriano/inmunología , Células Dendríticas/inmunología , Interferón-alfa/inmunología , Células Plasmáticas/inmunología , Animales , Infecciones Bacterianas/patología , Células Dendríticas/patología , Humanos , Células Plasmáticas/patología , Estructura Secundaria de Proteína , Porcinos , Catelicidinas
7.
Nanomedicine ; 12(3): 711-722, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26592962

RESUMEN

Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. FROM THE CLINICAL EDITOR: The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design.


Asunto(s)
Antígenos/genética , Polietileneimina/química , ARN/administración & dosificación , ARN/genética , Replicón , Vacunas/administración & dosificación , Vacunas/genética , Animales , Antígenos/inmunología , Línea Celular , Células Dendríticas/inmunología , Inmunidad Celular , Inmunidad Humoral , Ratones Endogámicos BALB C , Biosíntesis de Proteínas , ARN/inmunología , ARN/farmacocinética , Porcinos , Vacunas/inmunología , Vacunas/farmacocinética
8.
Nanomedicine ; 10(8): 1739-49, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24941461

RESUMEN

CpG-oligodeoxynucleotides (CpG-ODNs) interact with dendritic cells (DCs), but evidence is less clear for CpG-ODN admixed with or incorporated into vaccine delivery vehicles. We loaded alginate-coated chitosan-nanogels (Ng) with class-A or class-B CpG-ODN, and compared with the same CpG-ODNs free or admixed with empty Ng. Experiments were performed on both porcine and human blood DC subpopulations. Encapsulation of class-A CpG-ODN (loading into Ng) strongly reduced the CpG-ODN uptake and intracellular trafficking in the cytosol; this was associated with a marked deficiency in IFN-α induction. In contrast, encapsulation of class-B CpG-ODN increased its uptake and did not influence consistently intracellular trafficking into the nucleus. The choice of CpG-ODN class as adjuvant is thus critical in terms of how it will behave with nanoparticulate vaccine delivery vehicles. The latter can have distinctive modulatory influences on the CpG-ODN, which would require definition for different CpG-ODN and delivery vehicles prior to vaccine formulation. FROM THE CLINICAL EDITOR: This basic science study investigates the role of class-A and class-B CpG-oligodeoxynucleotides loaded into alginate-coated chitosan nanogels, demonstrating differential effects between the two classes as related to the use of these nanoformulations as vaccine delivery vehicles.


Asunto(s)
Alginatos/química , Quitosano/química , Células Dendríticas/metabolismo , Oligodesoxirribonucleótidos/química , Animales , Células Cultivadas , Citometría de Flujo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Microscopía Confocal , Porcinos
9.
Commun Biol ; 7(1): 779, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942984

RESUMEN

The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate 'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.


Asunto(s)
Vacunas Bacterianas , Mycoplasma , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Mycoplasma/genética , Mycoplasma/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Inmunoglobulinas/inmunología , Regulación Bacteriana de la Expresión Génica , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/prevención & control , Cabras
10.
Methods Mol Biol ; 2786: 89-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814391

RESUMEN

While mRNA vaccines have shown their worth, they have the same failing as inactivated vaccines, namely they have limited half-life, are non-replicating, and therefore limited to the size of the vaccine payload for the amount of material translated. New advances averting these problems are combining replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (typically 12-15 kb) derived from viral genomes defective in at least one essential structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitations with RepRNA are RNase-sensitivity and inefficient uptake by dendritic cells (DCs), which need to be overcome for efficacious RNA-based vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Condensing RepRNA with polyethylenimine (PEI) and encapsulating RepRNA into novel Coatsome-replicon vehicles are two approaches that have proven effective for delivery to DCs and induction of immune responses in vivo.


Asunto(s)
Células Dendríticas , Genoma Viral , Pestivirus , ARN Viral , Replicón , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , ARN Viral/genética , Pestivirus/genética , Pestivirus/inmunología , Replicón/genética , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Ratones , Polietileneimina/química , Vacunas de ARNm , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/administración & dosificación
11.
Nanomedicine ; 9(6): 806-17, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23347894

RESUMEN

Biodegradable nanoparticles have been employed for vaccine delivery, frequently admixed with adjuvants. Surprisingly, there is little information on their modulation of immune responses, speculated to be negligible. We analyzed the immunomodulatory capacity of alginate-coated chitosan nanogels (Ng), on porcine and human blood dendritic cells (DCs), when applied with defined adjuvants targeting different DC subpopulations. DC maturation, cytokine production and cell migration were assessed. Ng differentially influenced the immunomodulatory characteristics of individual Toll-like receptor (TLR) ligands: Pam3Cys-SK4-induced IL-1ß was enhanced; CpG-oligodeoxynucleotides (CpG-ODN)-induced IFN-α, IL-6 and TNFα were impaired; CpG-ODN-induced CD86 and CCR7, and cell migration, were diminished-plasmacytoid DCs (pDCs) were particularly sensitive. Therein, the Ng influence on DC endocytosis of the TLR ligands was apparently a major contributory element. This demonstrates the importance of predefining the interplay between delivery vehicles and admixed immunostimulatory moieties, for ensuring appropriate immune activation and efficacious combinations. FROM THE CLINICAL EDITOR: Biodegradable nanoparticles have been utilized in vaccine delivery; however, there is little information available on their immunomodulatory properties, which are thought to be negligible. This study clearly demonstrates that nanogels do influence the developing immune response, which needs to be taken into consideration when utilizing these otherwise very efficacious vaccine delivery approaches.


Asunto(s)
Quitosano/administración & dosificación , Células Dendríticas/citología , Endocitosis/genética , Polietilenglicoles/administración & dosificación , Polietileneimina/administración & dosificación , Receptores Toll-Like/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Alginatos/administración & dosificación , Alginatos/química , Animales , Sangre/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quitosano/química , Células Dendríticas/efectos de los fármacos , Ácido Glucurónico/administración & dosificación , Ácido Glucurónico/química , Ácidos Hexurónicos/administración & dosificación , Ácidos Hexurónicos/química , Humanos , Ligandos , Nanogeles , Polietilenglicoles/química , Polietileneimina/química , Porcinos
12.
STAR Protoc ; 3(4): 101688, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36116074

RESUMEN

Here, we present a protocol to analyze the T cell profiles of the neonatal ovine lung during respiratory syncytial virus (RSV) infection. The protocol delivers standardized multiparameter flow cytometry (FCM) analysis of CD4+, CD8+, regulatory, and γδ T cells isolated from lung, lymph nodes, and bronchoalveolar lavages (BALs). We detail the preparation of RSV and transtracheal inoculation of newborn lambs. We then describe tissue isolation and preparation of cell suspensions, followed by FCM acquisition to identify different T cell subsets. For complete details on the use and execution of this protocol, please refer to Démoulins et al. (2021).


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Animales , Ovinos , Infecciones por Virus Sincitial Respiratorio/patología , Citometría de Flujo , Virus Sincitiales Respiratorios , Pulmón/patología , Subgrupos de Linfocitos T
13.
Virology ; 567: 77-86, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032866

RESUMEN

Type-I interferon (IFN-I) signals exert a critical role in disease progression during viral infections. However, the immunomodulatory mechanisms by which IFN-I dictates disease outcomes remain to be fully defined. Here we report that IFN-I signals mediate thymic atrophy in viral infections, with more severe and prolonged loss of thymic output and unique kinetics and subtypes of IFN-α/ß expression in chronic infection compared to acute infection. Loss of thymic output was linked to inhibition of early stages of thymopoiesis (DN1-DN2 transition, and DN3 proliferation) and pronounced apoptosis during the late DP stage. Notably, infection-associated thymic defects were largely abrogated upon ablation of IFNαßR and partially mitigated in the absence of CD8 T cells, thus implicating direct as well as indirect effects of IFN-I on thymocytes. These findings provide mechanistic underpinnings for immunotherapeutic strategies targeting IFN-1 signals to manipulate disease outcomes during chronic infections and cancers.


Asunto(s)
Atrofia/virología , Interferón-alfa/inmunología , Interferón beta/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Timocitos/virología , Timo/virología , Animales , Atrofia/genética , Atrofia/inmunología , Atrofia/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Enfermedad Crónica , Femenino , Regulación de la Expresión Génica , Humanos , Memoria Inmunológica , Interferón-alfa/genética , Interferón beta/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Ganglios Linfáticos/virología , Depleción Linfocítica , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal/inmunología , Análisis de la Célula Individual , Timocitos/inmunología , Timocitos/patología , Timo/inmunología , Timo/patología
14.
Cell Rep Med ; 2(12): 100456, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34751258

RESUMEN

The ongoing SARS-CoV-2 pandemic continues to lead to high morbidity and mortality. During pregnancy, severe maternal and neonatal outcomes and placental pathological changes have been described. We evaluate SARS-CoV-2 infection at the maternal-fetal interface using precision-cut slices (PCSs) of human placenta. Remarkably, exposure of placenta PCSs to SARS-CoV-2 leads to a full replication cycle with infectious virus release. Moreover, the susceptibility of placental tissue to SARS-CoV-2 replication relates to the expression levels of ACE2. Viral proteins and/or viral RNA are detected in syncytiotrophoblasts, cytotrophoblasts, villous stroma, and possibly Hofbauer cells. While SARS-CoV-2 infection of placenta PCSs does not cause a detectable cytotoxicity or a pro-inflammatory cytokine response, an upregulation of one order of magnitude of interferon type III transcripts is measured. In conclusion, our data demonstrate the capacity of SARS-CoV-2 to infect and propagate in human placenta and constitute a basis for further investigation of SARS-CoV-2 biology at the maternal-fetal interface.


Asunto(s)
Placenta/virología , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/transmisión , COVID-19/virología , Vellosidades Coriónicas/virología , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Interferones/metabolismo , Placenta/citología , Placenta/metabolismo , Embarazo , ARN Viral/metabolismo , Trofoblastos/citología , Trofoblastos/virología , Proteínas Virales/metabolismo , Liberación del Virus , Replicación Viral , Interferón lambda
15.
J Immunol ; 181(10): 6757-69, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18981093

RESUMEN

TLRs constitute a first set of sensors that detect viral nucleic acids including dsRNA which triggers TLR3. We report the early, direct, and detrimental effect of polyinosine-polycytidilic acid treatment on T cell development. Inhibition of thymopoiesis was targeted to several thymocyte subpopulations. First, both a blockade of the double negative (DN)1-DN2 transition and a severe down-regulation of DN3-DN4 thymocyte proliferation were observed. In addition, an important decrease in the absolute numbers of double-positive thymocytes, concomitant with an increase in frequencies of apoptotic cells in this population were shown. This inhibition of thymopoiesis resulted in a reduced thymic output, as evidenced by a drop of the absolute numbers of naive T cells and TCR excision circles levels. The decrease in thymic cellularity and defects in thymic development were severely reduced, but not completely abolished in IFN-alpha/betaR(-/-) mice, showing a direct contribution of type I IFNs, known to be massively up-regulated in viral infections, to the inhibition of T cell development. Strikingly, the TCR repertoire in treated mice was biased toward shorter CDR3 lengths as a result of a decreased expression of TdT and Rag2. However, thymic integrity remained intact since thymopoiesis was restored both quantitatively and qualitatively 14 days after the cessation of polyinosine-polycytidilic acid treatment. These results demonstrate a novel immunomodulatory role for virally encoded TLR ligands and RNA sensors; they further illustrate the diversity of mechanisms that viruses use to interfere with the development of a pathogen-specific immune responses.


Asunto(s)
Antivirales/inmunología , Poli I-C/inmunología , ARN Viral/inmunología , Linfocitos T/inmunología , Timo/inmunología , Receptores Toll-Like/inmunología , Animales , Apoptosis/inmunología , Diferenciación Celular/inmunología , Femenino , Citometría de Flujo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/citología , Timo/crecimiento & desarrollo , Timo/patología
16.
Front Immunol ; 11: 622385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584723

RESUMEN

Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , ARN Viral/inmunología , Replicón/inmunología , Animales , COVID-19 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Pestivirus , ARN Viral/administración & dosificación , SARS-CoV-2 , Porcinos , Proteínas del Núcleo Viral/inmunología
17.
Sci Rep ; 9(1): 4833, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886214

RESUMEN

The neurotropic Japanese encephalitis virus (JEV) is responsible for Japanese encephalitis, an uncontrolled inflammatory disease of the central nervous system. Microglia cells are the unique innate immune cell type populating the brain that cross-communicate with neurons via the CX3CR1-CX3CL1 axis. However, microglia may serve as a viral reservoir for JEV. Human microglia are able to transmit JEV infectivity to neighbouring cells in a cell-to-cell contact-dependent manner. Using JEV-treated human blood monocyte-derived microglia, the present study investigates molecular mechanisms behind cell-to-cell virus transmission by human microglia. For that purpose, JEV-associated microglia were co-cultured with JEV susceptible baby hamster kidney cells under various conditions. Here, we show that microglia hosting JEV for up to 10 days were able to transmit the virus to susceptible cells. Interestingly, neutralizing anti-JEV antibodies did not completely abrogate cell-to-cell virus transmission. Hence, intracellular viral RNA could be a contributing source of infectious virus material upon intercellular interactions. Importantly, the CX3CL1-CX3CR1 axis was a key regulator of cell-to-cell virus transmission from JEV-hosting human microglia. Our findings suggest that human microglia may be a source of infection for neuronal populations and sustain JEV brain pathogenesis in long-term infection. Moreover, the present work emphasizes on the critical role of the CX3CR1-CX3CL1 axis in JEV pathogenesis mediating transmission of infectious genomic JEV RNA.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/transmisión , Microglía/virología , Animales , Capa Leucocitaria de la Sangre , Comunicación Celular , Diferenciación Celular , Línea Celular , Técnicas de Cocultivo , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/virología , Fibroblastos , Humanos , Leucocitos Mononucleares , Mesocricetus , Microglía/metabolismo , Microscopía Confocal , Cultivo Primario de Células , ARN Viral/metabolismo
18.
Mol Ther Nucleic Acids ; 12: 118-134, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30195751

RESUMEN

Advances in RNA technology during the past two decades have led to the construction of replication-competent RNA, termed replicons, RepRNA, or self-amplifying mRNA, with high potential for vaccine applications. Cytosolic delivery is essential for their translation and self-replication, without infectious progeny generation, providing high levels of antigen expression for inducing humoral and cellular immunity. Synthetic nanoparticle-based delivery vehicles can both protect the RNA molecules and facilitate targeting of dendritic cells-critical for immune defense development. Several cationic lipids were assessed, with RepRNA generated from classical swine fever virus encoding nucleoprotein genes of influenza A virus. The non-cytopathogenic nature of the RNA allowed targeting to dendritic cells without destroying the cells-important for prolonged antigen production and presentation. Certain lipids were more effective at delivery and at promoting translation of RepRNA than others. Selection of particular lipids provided delivery to dendritic cells that resulted in translation, demonstrating that delivery efficiency could not guarantee translation. The observed translation in vitro was reproduced in vivo by inducing immune responses against the encoded influenza virus antigens. Cationic lipid-mediated delivery shows potential for promoting RepRNA vaccine delivery to dendritic cells, particularly when combined with additional delivery elements.

19.
Methods Mol Biol ; 1499: 37-75, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27987142

RESUMEN

Most current vaccines are either inactivated pathogen-derived or protein/peptide-based, although attenuated and vector vaccines have also been developed. The former induce at best moderate protection, even as multimeric antigen, due to limitations in antigen loads and therefore capacity for inducing robust immune defense. While attenuated and vector vaccines offer advantages through their replicative nature, drawbacks and risks remain with potential reversion to virulence and interference from preexisting immunity. New advances averting these problems are combining self-amplifying replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (12-15 kb) derived from viral genomes defective in at least one structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitation with RepRNA is RNase-sensitivity and inefficient uptake by dendritic cells (DCs)-absolute requirements for efficacious vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Encapsulating RepRNA into chitosan nanoparticles, as well as condensing RepRNA with polyethylenimine (PEI), cationic lipids, or chitosans, has proven effective for delivery to DCs and induction of immune responses in vivo.


Asunto(s)
Células Dendríticas/inmunología , ARN/inmunología , Replicón/inmunología , Vacunas/inmunología , Animales , Sistemas de Liberación de Medicamentos/métodos , Técnicas de Transferencia de Gen , Humanos , ARN/genética , Replicón/genética , Vacunas/genética
20.
J Control Release ; 266: 256-271, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-28935594

RESUMEN

The major limitations with large and complex self-amplifying RNA vaccines (RepRNA) are RNase-sensitivity and inefficient translation in dendritic cells (DCs). Condensing RepRNA with polyethylenimine (PEI) gave positive in vitro readouts, but was largely inferior to virus-like replicon particles (VRP) or direct electroporation. In the present study, we improved such polyplex formulation and determined that fine-tuning of the polyplex structure is essential for ensuring efficacious translation. Thereby, three parameters dominate: (i) PEI molecular weight (MW); (ii) RepRNA:PEI (weight:weight) ratio; and (iii) inclusion of cell penetrating peptides (CPPs). Seven commercially available linear PEIs (MW 2,500-250,000) were classified as strong, intermediate or low for their aptitude at complexing and protecting RepRNA for delivery into porcine blood DCs. Inclusion of (Arg)9 or TAT(57-57) CPPs further modified the translation readouts, but varied for different gene expressions. Dependent on the formulation, translation of the gene of interest (GOI) inserted into the RepRNA (luciferase, or influenza virus hemagglutinin or nucleoprotein) could decrease, while the RepRNA structural gene (E2) translation increased. This was noted in the porcine SK6 cell line, as well as both porcine and, for the first time, human DCs. Two formulations - [Rep/PEI-4,000 (1:3)] and [Rep/PEI-40,000 (1:2)/(Arg)9] were efficacious in vivo in mice and pigs, where specific CD8+ T and CD4+ T-cell responses against the GOI-encoded antigen were observed for the first time. The results demonstrate that different polyplex formulations differ in their interaction with the RepRNA such that only certain genes can be translated. Thus, delivery of these large self-replicating RNA molecules require definition with respect to translation of different genes, rather than just the GOI as is the norm, for identifying optimal delivery for the desired immune activation in vivo.


Asunto(s)
Polietileneimina/administración & dosificación , ARN/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Animales , Antígenos/inmunología , Línea Celular , Péptidos de Penetración Celular , Células Dendríticas , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Peso Molecular , Ovalbúmina/inmunología , Polietileneimina/química , ARN/química , Ribonucleasa H/química , Porcinos , Linfocitos T/inmunología , Vacunas Sintéticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA