Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Pathol ; 248(4): 409-420, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30883759

RESUMEN

Splicing disruption is a common mechanism of gene inactivation associated with germline variants of susceptibility genes. To study the role of BRCA2 mis-splicing in hereditary breast/ovarian cancer (HBOC), we performed a comprehensive analysis of variants from BRCA2 exons 2-9, as well as the initial characterization of the regulatory mechanisms of such exons. A pSAD-based minigene with exons 2-9 was constructed and validated in MCF-7 cells, producing the expected transcript (1016-nt/V1-BRCA2_exons_2-9-V2). DNA variants from mutational databases were analyzed by NNSplice and Human Splicing Finder softwares. To refine ESE-variant prediction, we mapped the regulatory regions through a functional strategy whereby 26 exonic microdeletions were introduced into the minigene and tested in MCF-7 cells. Thus, we identified nine spliceogenic ESE-rich intervals where ESE-variants may be located. Combining bioinformatics and microdeletion assays, 83 variants were selected and genetically engineered in the minigene. Fifty-three changes impaired splicing: 28 variants disrupted the canonical sites, four created new ones, 10 abrogated enhancers, eight created silencers and three caused a double-effect. Notably, nine spliceogenic-ESE variants were located within ESE-containing intervals. Capillary electrophoresis and sequencing revealed more than 23 aberrant transcripts, where exon skipping was the most common event. Interestingly, variant c.67G>A triggered the usage of a noncanonical GC-donor 4-nt upstream. Thirty-six variants that induced severe anomalies (>60% aberrant transcripts) were analyzed according to the ACMG guidelines. Thus, 28 variants were classified as pathogenic, five as likely pathogenic and three as variants of uncertain significance. Interestingly, 13 VUS were reclassified as pathogenic or likely pathogenic variants. In conclusion, a large fraction of BRCA2 variants (∼64%) provoked splicing anomalies lending further support to the high prevalence of this disease-mechanism. The low accuracy of ESE-prediction algorithms may be circumvented by functional ESE-mapping that represents an optimal strategy to identify spliceogenic ESE-variants. Finally, systematic functional assays by minigenes depict a valuable tool for the initial characterization of splicing anomalies and the clinical interpretation of variants. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteína BRCA2/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Eliminación de Gen , Genes BRCA2 , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Empalme del ARN , Proteína BRCA2/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Biología Computacional , Exones , Femenino , Síndrome de Cáncer de Mama y Ovario Hereditario/metabolismo , Síndrome de Cáncer de Mama y Ovario Hereditario/patología , Humanos
2.
PLoS Genet ; 13(3): e1006691, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28339459

RESUMEN

Mutation screening of the breast cancer genes BRCA1 and BRCA2 identifies a large fraction of variants of uncertain clinical significance (VUS) whose functional and clinical interpretations pose a challenge for genomic medicine. Likewise, an increasing amount of evidence indicates that genetic variants can have deleterious effects on pre-mRNA splicing. Our goal was to investigate the impact on splicing of a set of reported variants of BRCA2 exons 17 and 18 to assess their role in hereditary breast cancer and to identify critical regulatory elements that may constitute hotspots for spliceogenic variants. A splicing reporter minigene with BRCA2 exons 14 to-20 (MGBR2_ex14-20) was constructed in the pSAD vector. Fifty-two candidate variants were selected with splicing prediction programs, introduced in MGBR2_ex14-20 by site-directed mutagenesis and assayed in triplicate in MCF-7 cells. Wild type MGBR2_ex14-20 produced a stable transcript of the expected size (1,806 nucleotides) and structure (V1-[BRCA2_exons_14-20]-V2). Functional mapping by microdeletions revealed essential sequences for exon recognition on the 3' end of exon 17 (c.7944-7973) and the 5' end of exon 18 (c.7979-7988, c.7999-8013). Thirty out of the 52 selected variants induced anomalous splicing in minigene assays with >16 different aberrant transcripts, where exon skipping was the most common event. A wide range of splicing motifs were affected including the canonical splice sites (15 variants), novel alternative sites (3 variants), the polypyrimidine tract (3 variants) and enhancers/silencers (9 variants). According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), 20 variants could be classified as pathogenic (c.7806-2A>G, c.7806-1G>A, c.7806-1G>T, c.7806-1_7806-2dup, c.7976+1G>A, c.7977-3_7978del, c.7977-2A>T, c.7977-1G>T, c.7977-1G>C, c.8009C>A, c.8331+1G>T and c.8331+2T>C) or likely pathogenic (c.7806-9T>G, c.7976G>C, c.7976G>A, c.7977-7C>G, c.7985C>G, c.8023A>G, c.8035G>T and c.8331G>A), accounting for 30.8% of all pathogenic/likely pathogenic variants of exons 17-18 at the BRCA Share database. The remaining 8 variants (c.7975A>G, c.7977-6T>G, c.7988A>T, c.7992T>A, c.8007A>G, c.8009C>T, c.8009C>G, and c.8072C>T) induced partial splicing anomalies with important ratios of the full-length transcript (≥70%), so that they remained classified as VUS. Aberrant splicing is therefore especially prevalent in BRCA2 exons 17 and 18 due to the presence of active ESEs involved in exon recognition. Splicing functional assays with minigenes are a valuable strategy for the initial characterization of the splicing outcomes and the subsequent clinical interpretation of variants of any disease-gene, although these results should be checked, whenever possible, against patient RNA.


Asunto(s)
Empalme Alternativo , Proteína BRCA2/genética , ADN de Neoplasias/genética , Exones/genética , Mutación , Secuencia de Bases , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Modelos Genéticos , Mutagénesis Sitio-Dirigida , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
3.
Breast Cancer Res Treat ; 171(1): 53-63, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29766361

RESUMEN

PURPOSE: Promoter mutations may affect transcription and can be associated with human diseases. However, the promoters of the breast cancer (BC) genes are not regularly screened. Our goal was to investigate the BRCA2 promoter in order to study a possible correlation between impaired transcription and disease. METHODS: The proximal and core promoter of the BRCA2 gene was sequenced in 95 high-risk BC patients. A BRCA2-promoter insert [- 938 to + 312 from the transcription start site (TSS)] was generated and cloned into the firefly luciferase vector pGL4.10. Promoter variants and deletions were introduced by site-directed mutagenesis and quantified by Dual-Luciferase assays and semi-quantitative RT-PCR. RESULTS: Three different variants were detected in high-risk BC patients: rs3092989, rs206118, and rs563971900. Functional mapping of 13 overlapping deletions revealed four down-regulating segments (TSS positions): -59_-10del/µdel3 (16% of activity of the wild-type construct), -104_-55del/µdel4 (62%), -239_-190del/µdel7 (39%), -464_-415/µdel12 (78%), suggesting the presence therein of putative transcriptional activator motifs. Additionally, six microdeletions rendered luciferase overexpression: +32_+81del/µdel1 (356%), -14_+36del/µdel2 (180%), -194_-145del/µdel6 (154%), -284_-235del/µdel8 (168%), -329_-280del/µdel9 (111%), and -509_-460del/µdel13 (139%), which is indicative of repressor elements. Functional assays of 15 promoter variants (including those detected in patients) showed that ten of them significantly altered expression with seven up-regulating (113-163%) and three down-regulating (rs551887850_G, rs570548398_T, rs55880202_T; 72-83%) SNPs. Eight of them were located in an ENCODE-DNase Hypersensitive Cluster (TSS - 185 to + 105) where most active transcriptional motifs are known to be placed. CONCLUSIONS: BRCA2 expression is highly sensitive to promoter variations as most of them induced relevant changes. Moreover, we mapped critical regions of the BRCA2 promoter that may constitute potential targets for regulatory variants. Three SNPs moderately decreased luciferase activity, but confirmation of its potential pathogenicity requires further analysis. These data reinforce the need to screen the promoter regions of breast cancer genes with a view to discovering novel deleterious mutations.


Asunto(s)
Proteína BRCA2/genética , Variación Genética , Regiones Promotoras Genéticas , Alelos , Femenino , Regulación de la Expresión Génica , Orden Génico , Genes Reporteros , Predisposición Genética a la Enfermedad , Vectores Genéticos , Humanos , Mutación , Polimorfismo de Nucleótido Simple , Transcripción Genética
4.
Hum Mutat ; 36(2): 210-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25382762

RESUMEN

Numerous pathogenic DNA variants impair the splicing mechanism in human genetic diseases. Minigenes are optimal approaches to test variants under the splicing viewpoint without the need of patient samples. We aimed to design a robust minigene construct of the breast cancer gene BRCA2 in order to investigate the impact of variants on splicing. BRCA2 exons 19-27 (MGBR2_ex19-27) were cloned in the new vector pSAD. It produced a large transcript of the expected size (2,174 nucleotides) and exon structure (V1-ex19-27-V2). Splicing assays showed that 18 (17 splice-site and 1 silencer variants) out of 40 candidate DNA variants induced aberrant patterns. Twenty-four anomalous transcripts were accurately detected by fluorescent-RT-PCR that were generated by exon-skipping, alternative site usage, and intron-retention events. Fourteen variants induced major anomalies and were predicted to disrupt protein function so they could be classified as pathogenic. Furthermore, minigene mimicked previously reported patient RNA outcomes of seven variants supporting the reproducibility of minigene assays. Therefore, a relevant fraction of variants are involved in breast cancer through splicing alterations. MGBR2_ex19-27 is the largest reported BRCA2 minigene and constitutes a valuable tool for the functional and clinical classification of sequence variations.


Asunto(s)
Empalme Alternativo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Exones , Estudios de Asociación Genética , Células HeLa , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Humanos , Células MCF-7 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Carcinogenesis ; 34(11): 2505-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23929434

RESUMEN

BRCA2-c.2808_2811del (3036delACAA) is one of the most reported germ line mutations in non-Ashkenazi breast cancer patients. We investigated its genetic origin in 51 Spanish carrier families that were genotyped with 11 13q polymorphic markers. Three independent associated haplotypes were clearly distinguished accounting for 23 [west Castilla y León (WCL)], 20 [east Castilla y León (ECL)] and 6 (South of Spain) families. Mutation age was estimated with the Disequilibrium Mapping using Likelihood Estimation software in a range of 45-68 and 45-71 generations for WCL and ECL haplotypes, respectively. The most prevalent variants, c.2808_2811del and c.2803G > A, were located in a double-hairpin loop structure (c.2794-c.2825) predicted by Quikfold that was proposed as a mutational hotspot. To check this hypothesis, random mutagenesis was performed over a 923 bp fragment of BRCA2, and 86 DNA variants were characterized. Interestingly, three mutations reported in the mutation databases (c.2680G > A, c.2944del and c.2957dup) were replicated and 20 affected the same position with different nucleotide changes. Moreover, five variants were placed in the same hairpin loop of c.2808_2811del, and one affected the same position (c.2808A > G). In conclusion, our results support that at least three different mutational events occurred to generate c.2808_2811del. Other highly prevalent DNA variants, such as BRCA1-c.68_69delAG, BRCA2-c.5946delT and c.8537delAG, are concentrated in hairpin loops, suggesting that these structures may represent mutational hotspots.


Asunto(s)
Proteína BRCA2/genética , Neoplasias de la Mama/genética , Haplotipos/genética , Mutación/genética , Adulto , Anciano , Anciano de 80 o más Años , Emparejamiento Base , Secuencia de Bases , Familia , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutagénesis , Polimorfismo Genético , Pronóstico , España
6.
Cancers (Basel) ; 12(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333735

RESUMEN

Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them, a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%) impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T, c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.

7.
Front Genet ; 10: 503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191615

RESUMEN

A relevant fraction of BRCA2 variants is associated with splicing alterations and with an increased risk of hereditary breast and ovarian cancer (HBOC). In this work, we have carried out a thorough study of variants from BRCA2 exons 14 and 15 reported at mutation databases. A total of 294 variants from exons 14 and 15 and flanking intronic sequences were analyzed with the online splicing tools NNSplice and Human Splicing Finder. Fifty-three out of these 294 variants were selected as candidate splicing variants. All variants but one, were introduced into the minigene MGBR2_ex14-20 (with exons 14-20) by site-directed mutagenesis and assayed in MCF-7 cells. Twelve of the remaining 52 variants (23.1%) impaired splicing at different degrees, yielding from 5 to 100% of aberrant transcripts. Nine variants affected the natural acceptor or donor sites of both exons and three affected putative enhancers or silencers. Fluorescent capillary electrophoresis revealed at least 10 different anomalous transcripts: (E14q5), Δ (E14p10), Δ(E14p246), Δ(E14q256), Δ(E14), Δ(E15p12), Δ(E15p13), Δ(E15p83), Δ(E15) and a 942-nt fragment of unknown structure. All transcripts, except for Δ(E14q256) and Δ(E15p12), are expected to truncate the BRCA2 protein. Nine variants induced severe splicing aberrations with more than 90% of abnormal transcripts. Thus, according to the guidelines of the American College of Medical Genetics and Genomics, eight variants should be classified as pathogenic (c.7008-2A > T, c.7008-1G > A, c.7435+1G > C, c.7436-2A > T, c.7436-2A > G, c.7617+1G > A, c.7617+1G > T, and c.7617+2T > G), one as likely pathogenic (c.7008-3C > G) and three remain as variants of uncertain clinical significance or VUS (c.7177A > G, c.7447A > G and c.7501C > T). In conclusion, functional assays by minigenes constitute a valuable strategy to primarily check the splicing impact of DNA variants and their clinical interpretation. While bioinformatics predictions of splice site variants were accurate, those of enhancer or silencer variants were poor (only 3/23 spliceogenic variants) which showed weak impacts on splicing (∼5-16% of aberrant isoforms). So, the Exonic Splicing Enhancer and Silencer (ESE and ESS, respectively) prediction algorithms require further improvement.

8.
Front Genet ; 9: 188, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29881398

RESUMEN

Genetic testing of BRCA1 and BRCA2 identifies a large number of variants of uncertain clinical significance whose functional and clinical interpretations pose a challenge for genetic counseling. Interestingly, a relevant fraction of DNA variants can disrupt the splicing process in cancer susceptibility genes. We have tested more than 200 variants throughout 19 BRCA2 exons mostly by minigene assays, 54% of which displayed aberrant splicing, thus confirming the utility of this assay to check genetic variants in the absence of patient RNA. Our goal was to investigate BRCA2 exon 16 with a view to characterizing spliceogenic variants recorded at the mutational databases. Seventy-two different BIC and UMD variants were analyzed with NNSplice and Human Splicing Finder, 12 of which were selected because they were predicted to disrupt essential splice motifs: canonical splice sites (ss; eight variants) and exonic/intronic splicing enhancers (four variants). These 12 candidate variants were introduced into the BRCA2 minigene with seven exons (14-20) by site-directed mutagenesis and then transfected into MCF-7 cells. Seven variants (six intronic and one missense) induced complete abnormal splicing patterns: c.7618-2A>T, c.7618-2A>G, c.7618-1G>C, c.7618-1G>A, c.7805G>C, c.7805+1G>A, and c.7805+3A>C, as well as a partial anomalous outcome by c.7802A>G. They generated at least 10 different transcripts: Δ16p44 (alternative 3'ss 44-nt downstream; acceptor variants), Δ16 (exon 16-skipping; donor variants), Δ16p55 (alternative 3'ss 55-nt downstream), Δ16q4 (alternative 5'ss 4-nt upstream), Δ16q100 (alternative 5'ss 4-nt upstream), ▾16q20 (alternative 5'ss 20-nt downstream), as well as minor (Δ16p93 and Δ16,17p69) and uncharacterized transcripts of 893 and 954 nucleotides. Isoforms Δ16p44, Δ16, Δ16p55, Δ16q4, Δ16q100, and ▾16q20 introduced premature termination codons which presumably inactivate BRCA2. According to the guidelines the American College of Medical Genetics and Genomics these eight variants could be classified as pathogenic or likely pathogenic whereas the Evidence-based Network for the Interpretation of Germline Mutant Alleles rules suggested seven class 4 and one class 3 variants. In conclusion, our study highlights the relevance of splicing functional assays by hybrid minigenes for the clinical classification of genetic variations. Hence, we provide new data about spliceogenic variants of BRCA2 exon 16 that are directly correlated with breast cancer susceptibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA