Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801081

RESUMEN

Dealing with sequence coordinates in different formats and reference genomes is challenging in genetic research. This complexity arises from the need to convert and harmonize datasets of different sources using alternating nomenclatures. Since manual processing is time-consuming and requires specialized knowledge, the Sequence Conversion and Analysis Toolbox (SeqCAT) was developed for daily work with genetic datasets. Our tool provides a range of functions designed to standardize and convert gene variant coordinates based on various sequence types. Its user-friendly web interface provides easy access to all functionalities, while the Application Programming Interface (API) enables automation within pipelines. SeqCAT provides access to human genomic, protein and transcript data, utilizing various data resources and packages and extending them with its own unique features. The platform covers a wide range of genetic research needs with its 14 different applications and 3 info points, including search for transcript and gene information, transition between reference genomes, variant mapping, and genetic event review. Notable examples are 'Convert Protein to DNA Position' for translation of amino acid changes into genomic single nucleotide variants, or 'Fusion Check' for frameshift determination in gene fusions. SeqCAT is an excellent resource for converting sequence coordinate data into the required formats and is available at: https://mtb.bioinf.med.uni-goettingen.de/SeqCAT/.

2.
Genes Dev ; 30(11): 1300-12, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27257214

RESUMEN

Motile multiciliated cells (MCCs) have critical roles in respiratory health and disease and are essential for cleaning inhaled pollutants and pathogens from airways. Despite their significance for human disease, the transcriptional control that governs multiciliogenesis remains poorly understood. Here we identify TP73, a p53 homolog, as governing the program for airway multiciliogenesis. Mice with TP73 deficiency suffer from chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance. Organotypic airway cultures pinpoint TAp73 as necessary and sufficient for basal body docking, axonemal extension, and motility during the differentiation of MCC progenitors. Mechanistically, cross-species genomic analyses and complete ciliary rescue of knockout MCCs identify TAp73 as the conserved central transcriptional integrator of multiciliogenesis. TAp73 directly activates the key regulators FoxJ1, Rfx2, Rfx3, and miR34bc plus nearly 50 structural and functional ciliary genes, some of which are associated with human ciliopathies. Our results position TAp73 as a novel central regulator of MCC differentiation.


Asunto(s)
Diferenciación Celular/genética , Cilios/genética , Regulación de la Expresión Génica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mucosa Respiratoria/citología , Animales , Células Cultivadas , Técnicas de Inactivación de Genes , Ratones , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/fisiopatología
3.
BMC Med Inform Decis Mak ; 23(1): 239, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884906

RESUMEN

BACKGROUND: Chronic kidney disease (CKD), a major public health problem with differing disease etiologies, leads to complications, comorbidities, polypharmacy, and mortality. Monitoring disease progression and personalized treatment efforts are crucial for long-term patient outcomes. Physicians need to integrate different data levels, e.g., clinical parameters, biomarkers, and drug information, with medical knowledge. Clinical decision support systems (CDSS) can tackle these issues and improve patient management. Knowledge about the awareness and implementation of CDSS in Germany within the field of nephrology is scarce. PURPOSE: Nephrologists' attitude towards any CDSS and potential CDSS features of interest, like adverse event prediction algorithms, is important for a successful implementation. This survey investigates nephrologists' experiences with and expectations towards a useful CDSS for daily medical routine in the outpatient setting. METHODS: The 38-item questionnaire survey was conducted either by telephone or as a do-it-yourself online interview amongst nephrologists across all of Germany. Answers were collected and analysed using the Electronic Data Capture System REDCap, as well as Stata SE 15.1, and Excel. The survey consisted of four modules: experiences with CDSS (M1), expectations towards a helpful CDSS (M2), evaluation of adverse event prediction algorithms (M3), and ethical aspects of CDSS (M4). Descriptive statistical analyses of all questions were conducted. RESULTS: The study population comprised 54 physicians, with a response rate of about 80-100% per question. Most participants were aged between 51-60 years (45.1%), 64% were male, and most participants had been working in nephrology out-patient clinics for a median of 10.5 years. Overall, CDSS use was poor (81.2%), often due to lack of knowledge about existing CDSS. Most participants (79%) believed CDSS to be helpful in the management of CKD patients with a high willingness to try out a CDSS. Of all adverse event prediction algorithms, prediction of CKD progression (97.8%) and in-silico simulations of disease progression when changing, e. g., lifestyle or medication (97.7%) were rated most important. The spectrum of answers on ethical aspects of CDSS was diverse. CONCLUSION: This survey provides insights into experience with and expectations of out-patient nephrologists on CDSS. Despite the current lack of knowledge on CDSS, the willingness to integrate CDSS into daily patient care, and the need for adverse event prediction algorithms was high.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Insuficiencia Renal Crónica , Humanos , Masculino , Persona de Mediana Edad , Femenino , Nefrólogos , Motivación , Insuficiencia Renal Crónica/terapia , Encuestas y Cuestionarios , Progresión de la Enfermedad
4.
BMC Biol ; 20(1): 38, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135533

RESUMEN

BACKGROUND: Most of the known genes required for developmental processes have been identified by genetic screens in a few well-studied model organisms, which have been considered representative of related species, and informative-to some degree-for human biology. The fruit fly Drosophila melanogaster is a prime model for insect genetics, and while conservation of many gene functions has been observed among bilaterian animals, a plethora of data show evolutionary divergence of gene function among more closely-related groups, such as within the insects. A quantification of conservation versus divergence of gene functions has been missing, without which it is unclear how representative data from model systems actually are. RESULTS: Here, we systematically compare the gene sets required for a number of homologous but divergent developmental processes between fly and beetle in order to quantify the difference of the gene sets. To that end, we expanded our RNAi screen in the red flour beetle Tribolium castaneum to cover more than half of the protein-coding genes. Then we compared the gene sets required for four different developmental processes between beetle and fly. We found that around 50% of the gene functions were identified in the screens of both species while for the rest, phenotypes were revealed only in fly (~ 10%) or beetle (~ 40%) reflecting both technical and biological differences. Accordingly, we were able to annotate novel developmental GO terms for 96 genes studied in this work. With this work, we publish the final dataset for the pupal injection screen of the iBeetle screen reaching a coverage of 87% (13,020 genes). CONCLUSIONS: We conclude that the gene sets required for a homologous process diverge more than widely believed. Hence, the insights gained in flies may be less representative for insects or protostomes than previously thought, and work in complementary model systems is required to gain a comprehensive picture. The RNAi screening resources developed in this project, the expanding transgenic toolkit, and our large-scale functional data make T. castaneum an excellent model system in that endeavor.


Asunto(s)
Escarabajos , Tribolium , Animales , Escarabajos/genética , Drosophila , Drosophila melanogaster/genética , Pupa , Interferencia de ARN , Tribolium/genética
5.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937263

RESUMEN

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Asunto(s)
Genes de Insecto , Genoma de los Insectos , Genómica , Tribolium/genética , Animales , Sitios de Unión , Biología Computacional/métodos , Genómica/métodos , MicroARNs/genética , Anotación de Secuencia Molecular , Filogenia , Interferencia de ARN , Reproducibilidad de los Resultados
6.
Nucleic Acids Res ; 46(D1): D831-D835, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29069517

RESUMEN

The iBeetle-Base provides access to sequence and phenotype information for genes of the beetle Tribolium castaneum. It has been updated including more and updated data and new functions. RNAi phenotypes are now available for >50% of the genes, which represents an expansion of 60% compared to the previous version. Gene sequence information has been updated based on the new official gene set OGS3 and covers all genes. Interoperability with FlyBase has been enhanced: First, gene information pages of homologous genes are interlinked between both databases. Second, some steps of a new query pipeline allow transforming gene lists from either species into lists with related gene IDs, names or GO terms. This facilitates the comparative analysis of gene functions between fly and beetle. The backend of the pipeline is implemented as endpoints of a RESTful interface, such that it can be reused by other projects or tools. A novel online interface allows the community to propose GO terms for their gene of interest expanding the range of animals where GO terms are defined. iBeetle-Base is available at http://ibeetle-base.uni-goettingen.de/.


Asunto(s)
Bases de Datos Genéticas , Tribolium/genética , Animales , Ontología de Genes , Fenotipo , Interferencia de ARN , Interfaz Usuario-Computador
7.
Nucleic Acids Res ; 46(D1): D343-D347, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29087517

RESUMEN

TFClass is a resource that classifies eukaryotic transcription factors (TFs) according to their DNA-binding domains (DBDs), available online at http://tfclass.bioinf.med.uni-goettingen.de. The classification scheme of TFClass was originally derived for human TFs and is expanded here to the whole taxonomic class of mammalia. Combining information from different resources, checking manually the retrieved mammalian TFs sequences and applying extensive phylogenetic analyses, >39 000 TFs from up to 41 mammalian species were assigned to the Superclasses, Classes, Families and Subfamilies of TFClass. As a result, TFClass now provides the corresponding sequence collection in FASTA format, sequence logos and phylogenetic trees at different classification levels, predicted TF binding sites for human, mouse, dog and cow genomes as well as links to several external databases. In particular, all those TFs that are also documented in the TRANSFAC® database (FACTOR table) have been linked and can be freely accessed. TRANSFAC® FACTOR can also be queried through an own search interface.


Asunto(s)
Bases de Datos de Proteínas , Factores de Transcripción/clasificación , Animales , Sitios de Unión , Bovinos , Perros , Humanos , Mamíferos , Ratones , Filogenia , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Interfaz Usuario-Computador
8.
Nucleic Acids Res ; 43(Database issue): D97-102, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25361979

RESUMEN

TFClass aims at classifying eukaryotic transcription factors (TFs) according to their DNA-binding domains (DBDs). For this, a classification schema comprising four generic levels (superclass, class, family and subfamily) was defined that could accommodate all known DNA-binding human TFs. They were assigned to their (sub-)families as instances at two different levels, the corresponding TF genes and individual gene products (protein isoforms). In the present version, all mouse and rat orthologs have been linked to the human TFs, and the mouse orthologs have been arranged in an independent ontology. Many TFs were assigned with typical DNA-binding patterns and positional weight matrices derived from high-throughput in-vitro binding studies. Predicted TF binding sites from human gene upstream sequences are now also attached to each human TF whenever a PWM was available for this factor or one of his paralogs. TFClass is freely available at http://tfclass.bioinf.med.uni-goettingen.de/ through a web interface and for download in OBO format.


Asunto(s)
Bases de Datos de Proteínas , Factores de Transcripción/clasificación , Animales , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Internet , Ratones , Estructura Terciaria de Proteína , Ratas , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Nucleic Acids Res ; 43(Database issue): D720-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378303

RESUMEN

The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.


Asunto(s)
Bases de Datos Genéticas , Genes de Insecto , Interferencia de ARN , Tribolium/genética , Animales , Femenino , Internet , Fenotipo , Tribolium/anatomía & histología , Tribolium/embriología , Interfaz Usuario-Computador
10.
BMC Genomics ; 16: 674, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26334912

RESUMEN

BACKGROUND: Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. RESULTS: We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. CONCLUSIONS: Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.


Asunto(s)
Genes de Insecto , Control Biológico de Vectores , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Tribolium/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Secuencia Conservada , Ontología de Genes
11.
Nucleic Acids Res ; 41(Database issue): D165-70, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23180794

RESUMEN

TFClass (http://tfclass.bioinf.med.uni-goettingen.de/) provides a comprehensive classification of human transcription factors based on their DNA-binding domains. Transcription factors constitute a large functional family of proteins directly regulating the activity of genes. Most of them are sequence-specific DNA-binding proteins, thus reading out the information encoded in cis-regulatory DNA elements of promoters, enhancers and other regulatory regions of a genome. TFClass is a database that classifies human transcription factors by a six-level classification schema, four of which are abstractions according to different criteria, while the fifth level represents TF genes and the sixth individual gene products. Altogether, nine superclasses have been identified, comprising 40 classes and 111 families. Counted by genes, 1558 human TFs have been classified so far or >2900 different TFs when including their isoforms generated by alternative splicing or protein processing events. With this classification, we hope to provide a basis for deciphering protein-DNA recognition codes; moreover, it can be used for constructing expanded transcriptional networks by inferring additional TF-target gene relations.


Asunto(s)
Bases de Datos de Proteínas , Factores de Transcripción/clasificación , Proteínas de Unión al ADN/química , Humanos , Internet , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de Proteína , Factores de Transcripción/química
12.
Stud Health Technol Inform ; 307: 60-68, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697838

RESUMEN

NGS is increasingly used in precision medicine, but an automated sequencing pipeline that can detect different types of variants (single nucleotide - SNV, copy number - CNV, structural - SV) and does not rely on normal samples as germline comparison is needed. To address this, we developed Onkopipe, a Snakemake-based pipeline that integrates quality control, read alignments, BAM pre-processing, and variant calling tools to detect SNV, CNV, and SV in a unified VCF format without matched normal samples. Onkopipe is containerized and provides features such as reproducibility, parallelization, and easy customization, enabling the analysis of genomic data in precision medicine. Our validation and evaluation demonstrate high accuracy and concordance, making Onkopipe a valuable open-source resource for molecular tumor boards. Onkopipe is being shared as an open source project and is available at https://gitlab.gwdg.de/MedBioinf/mtb/onkopipe.


Asunto(s)
ADN , Medicina de Precisión , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Secuencia de Bases
13.
Dev Dyn ; 240(8): 1905-16, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21761476

RESUMEN

Formation of the mammalian primitive streak appears to rely on cell proliferation to a minor extent only, but compensating cell movements have not yet been directly observed. This study analyses individual cell migration and proliferation simultaneously, using multiphoton and differential interference contrast time-lapse microscopy of late pregastrulation rabbit blastocysts. Epiblast cells in the posterior gastrula extension area accumulated medially and displayed complex planar movements including U-turns and a novel type of processional cell movement. In the same area metaphase plates tended to be aligned parallel to the anterior-posterior axis, and statistical analysis showed that rotations of metaphase plates causing preferred orientation were near-complete 8 min before anaphase onset; in some cases, rotations were strikingly rapid, achieving up to 45° per min. The mammalian primitive streak appears to be formed initially with its typically minimal anteroposterior elongation by a combination of oriented cell divisions with dedicated planar cell movements.


Asunto(s)
División Celular/fisiología , Movimiento Celular/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Línea Primitiva/citología , Animales , Blastocisto/citología , Blastocisto/fisiología , Polaridad Celular , Proliferación Celular , Células Cultivadas , Gastrulación , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica , Microscopía de Interferencia , Línea Primitiva/fisiología , Conejos , Imagen de Lapso de Tiempo/métodos
14.
Stud Health Technol Inform ; 296: 73-80, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36073491

RESUMEN

Next-generation sequencing methods continuously provide clinicians and researchers in precision oncology with growing numbers of genomic variants found in cancer. However, manually interpreting the list of variants to identify reliable targets is an inefficient and cumbersome process that does not scale with the increasing number of cases. Support by computer systems is needed for the analysis of large scale experiments and clinical studies to identify new targets and therapies, and user-friendly applications are needed in molecular tumor boards to support clinicians in their decision-making processes. The MTB-Report tool annotates, filters and sorts genetic variants with information from public databases, providing evidence on actionable variants in both scenarios. A web interface supports medical doctors in the tumor board, and a command line mode allows batch processing of large datasets. The MTB-Report tool is available as an R implementation as well as a Docker image to provide a tool that runs out-of-the-box. Moreover, containerization ensures a stable application that delivers reproducible results over time. A public version of the web interface is available at: http://mtb.bioinf.med.uni-goettingen.de/mtb-report.


Asunto(s)
Neoplasias , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Oncología Médica , Neoplasias/genética , Medicina de Precisión
15.
Metabolites ; 12(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36144216

RESUMEN

Untargeted metabolomics is a promising tool for identifying novel disease biomarkers and unraveling underlying pathomechanisms. Nuclear magnetic resonance (NMR) spectroscopy is particularly suited for large-scale untargeted metabolomics studies due to its high reproducibility and cost effectiveness. Here, one-dimensional (1D) 1H NMR experiments offer good sensitivity at reasonable measurement times. Their subsequent data analysis requires sophisticated data preprocessing steps, including the extraction of NMR features corresponding to specific metabolites. We developed a novel 1D NMR feature extraction procedure, called Bucket Fuser (BF), which is based on a regularized regression framework with fused group LASSO terms. The performance of the BF procedure was demonstrated using three independent NMR datasets and was benchmarked against existing state-of-the-art NMR feature extraction methods. BF dynamically constructs NMR metabolite features, the widths of which can be adjusted via a regularization parameter. BF consistently improved metabolite signal extraction, as demonstrated by our correlation analyses with absolutely quantified metabolites. It also yielded a higher proportion of statistically significant metabolite features in our differential metabolite analyses. The BF algorithm is computationally efficient and it can deal with small sample sizes. In summary, the Bucket Fuser algorithm, which is available as a supplementary python code, facilitates the fast and dynamic extraction of 1D NMR signals for the improved detection of metabolic biomarkers.

16.
NAR Genom Bioinform ; 3(4): lqab110, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34859210

RESUMEN

Identifying essential genes on a genome scale is resource intensive and has been performed for only a few eukaryotes. For less studied organisms essentiality might be predicted by gene homology. However, this approach cannot be applied to non-conserved genes. Additionally, divergent essentiality information is obtained from studying single cells or whole, multi-cellular organisms, and particularly when derived from human cell line screens and human population studies. We employed machine learning across six model eukaryotes and 60 381 genes, using 41 635 features derived from the sequence, gene function information and network topology. Within a leave-one-organism-out cross-validation, the classifiers showed high generalizability with an average accuracy close to 80% in the left-out species. As a case study, we applied the method to Tribolium castaneum and Bombyx mori and validated predictions experimentally yielding similar performances. Finally, using the classifier based on the studied model organisms enabled linking the essentiality information of human cell line screens and population studies.

17.
Stud Health Technol Inform ; 283: 209-216, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34545838

RESUMEN

Precision oncology utilizing molecular biomarkers for targeted therapies is one of the hopes to treat cancer. The availability of patient specific molecular profiling through next-generation sequencing, though, increases the amount of available data per patient to an extent that computational support is required to identify potential driver alterations for targeted therapies and rational decision-making in molecular tumor boards (MTBs). For some genetic variants evidence-based drug recommendations are available in public databases, but for the majority, the variants of unknown significance (VUS), this clinical information is missing. Additionally, for most of these variants no information about the functional impact on the protein is accessible. To acquire maximal functional evidence for VUS, the VUS-Predict pipeline collects estimations about the effect of a VUS by integrating multiple pre-existing tools. Pre-existing tools implement different approaches for their predictions, which are summarized by our newly developed tool with a common score and classification in neutral or deleterious variants. The primary tools are chosen based on their sensitivity and specificity on well-known variants of the transcription factor TP53. Resulting negative and positive predictive values are used to calibrate the VUS-Predict pipeline. Further, the pipeline is evaluated using data from public cancer databases and cases of the MTB in Göttingen, both also in comparison with the ensemble method REVEL. The results show that VUS-Predict has clear advantages in a clinical setting due to clear and traceable predictions. In particular, VUS outperforms REVEL in the real-life setting of a MTB. Likewise, an evaluation on variants of public cancer databases confirms the good results of VUS-Predict and shows the need for a reliable gold standard and unambiguous results of the tools under test.


Asunto(s)
Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión
18.
Nucleic Acids Res ; 36(Database issue): D689-94, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18045786

RESUMEN

EndoNet is an information resource about intercellular regulatory communication. It provides information about hormones, hormone receptors, the sources (i.e. cells, tissues and organs) where the hormones are synthesized and secreted, and where the respective receptors are expressed. The database focuses on the regulatory relations between them. An elementary communication is displayed as a causal link from a cell that secretes a particular hormone to those cells which express the corresponding hormone receptor and respond to the hormone. Whenever expression, synthesis and/or secretion of another hormone are part of this response, it renders the corresponding cell an internal node of the resulting network. This intercellular communication network coordinates the function of different organs. Therefore, the database covers the hierarchy of cellular organization of tissues and organs as it has been modeled in the Cytomer ontology, which has now been directly embedded into EndoNet. The user can query the database; the results can be used to visualize the intercellular information flow. A newly implemented hormone classification enables to browse the database and may be used as alternative entry point. EndoNet is accessible at: http://endonet.bioinf.med.uni-goettingen.de/.


Asunto(s)
Comunicación Celular , Bases de Datos Factuales , Hormonas/metabolismo , Gráficos por Computador , Hormonas/clasificación , Internet , Receptores de Superficie Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Interfaz Usuario-Computador
19.
Nucleic Acids Res ; 35(Web Server issue): W619-24, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17584786

RESUMEN

High-throughput methods for measuring transcript abundance, like SAGE or microarrays, are widely used for determining differences in gene expression between different tissue types, dignities (normal/malignant) or time points. Further analysis of such data frequently aims at the identification of gene interaction networks that form the causal basis for the observed properties of the systems under examination. To this end, it is usually not sufficient to rely on the measured gene expression levels alone; rather, additional biological knowledge has to be taken into account in order to generate useful hypotheses about the molecular mechanism leading to the realization of a certain phenotype. We present a method that combines gene expression data with biological expert knowledge on molecular interaction networks, as described by the TRANSPATH database on signal transduction, to predict additional--and not necessarily differentially expressed--genes or gene products which might participate in processes specific for either of the examined tissues or conditions. In a first step, significance values for over-expression in tissue/condition A or B are assigned to all genes in the expression data set. Genes with a significance value exceeding a certain threshold are used as starting points for the reconstruction of a graph with signaling components as nodes and signaling events as edges. In a subsequent graph traversal process, again starting from the previously identified differentially expressed genes, all encountered nodes 'inherit' all their starting nodes' significance values. In a final step, the graph is visualized, the nodes being colored according to a weighted average of their inherited significance values. Each node's, or sub-network's, predominant color, ranging from green (significant for tissue/condition A) over yellow (not significant for either tissue/condition) to red (significant for tissue/condition B), thus gives an immediate visual clue on which molecules--differentially expressed or not--may play pivotal roles in the tissues or conditions under examination. The described method has been implemented in Java as a client/server application and a web interface called DEEP (Differential Expression Effector Prediction). The client, which features an easy-to-use graphical interface, can freely be downloaded from the following URL: http://deep.bioinf.med.uni-goettingen.de.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica , Mapeo de Interacción de Proteínas , Transducción de Señal , Algoritmos , Animales , Simulación por Computador , Interpretación Estadística de Datos , Humanos , Internet , Modelos Biológicos , Modelos Genéticos , Fenotipo , Programas Informáticos , Interfaz Usuario-Computador
20.
Nucleic Acids Res ; 34(Database issue): D540-5, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381928

RESUMEN

EndoNet is a new database that provides information about the components of endocrine networks and their relations. It focuses on the endocrine cell-to-cell communication and enables the analysis of intercellular regulatory pathways in humans. In the EndoNet data model, two classes of components span a bipartite directed graph. One class represents the hormones (in the broadest sense) secreted by defined donor cells. The other class consists of the acceptor or target cells expressing the corresponding hormone receptors. The identity and anatomical environment of cell types, tissues and organs is defined through references to the CYTOMER ontology. With the EndoNet user interface, it is possible to query the database for hormones, receptors or tissues and to combine several items from different search rounds in one complex result set, from which a network can be reconstructed and visualized. For each entity, a detailed characteristics page is available. Some well-established endocrine pathways are offered as showcases in the form of predefined result sets. These sets can be used as a starting point for a more complex query or for obtaining a quick overview. The EndoNet database is accessible at http://endonet.bioinf.med.uni-goettingen.de/.


Asunto(s)
Comunicación Celular , Bases de Datos Genéticas , Sistema Endocrino/fisiología , Gráficos por Computador , Sistema Endocrino/citología , Hormonas/fisiología , Humanos , Internet , Modelos Biológicos , Receptores de Superficie Celular/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA