Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 9(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392754

RESUMEN

Improvement of endothelial function represents a major health effect of tea in humans. Ex vivo, tea and tea polyphenols stimulate nitric oxide (NO)-dependent vasodilation in isolated blood vessels. However, it was reported that polyphenols can generate reactive oxygen species (ROS) in vitro. We therefore aimed to elucidate the role of ROS production in tea polyphenol-induced vasodilation in explanted aortic rings. Vasorelaxation of rat aortic rings was assessed in an organ chamber model with low concentrations of epigallocatechin-3-gallate (EGCG), theaflavin-3,3'-digallate (TF3), and with green and black tea, with or without pretreatment with catalase or superoxide dismutase (SOD). The stability of EGCG and TF3 was measured by HPLC, and the levels of hydrogen peroxide (H2O2) were determined. EGCG and green tea-induced vasorelaxation was completely prevented by catalase and slightly increased by SOD. TF3 and black tea yielded similar results. Both EGCG and TF3 were rapidly degraded. This was associated with increasing H2O2 levels over time. Hydrogen peroxide concentrations produced in a time range compatible with tea polyphenol decay induced NO-dependent vasodilation in aortic rings. In conclusion, tea polyphenol-induced vasodilation in vitro is mediated by low levels of H2O2 generated during compound decay. The results could explain the apparent lack of vasodilatory effects of isolated tea polyphenols in humans.

2.
J Biol Chem ; 279(7): 6190-5, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14645258

RESUMEN

Epidemiological studies suggest that tea catechins may reduce the risk of cardiovascular disease, but the mechanisms of benefit have not been determined. The objective of the present study was to investigate the effects of epigallocatechin-3-gallate (EGCG), the major constituent of green tea, on vasorelaxation and on eNOS expression and activity in endothelial cells. EGCG (1-50 microm) induced dose-dependent vasodilation in rat aortic rings. Vasodilation was abolished by pretreatment with Ng-nitro L-arginine methyl ester. In bovine aortic endothelial cells, EGCG increased endothelial nitric oxide (eNOS) activity dose-dependently after 15 min. Treatment with EGCG induced a sustained activation of Akt, ERK1/2, and eNOS Ser1179 phosphorylation. Inhibition of extracellular signal-regulated kinase (ERK)1/2 had no influence on eNOS activity or Ser1179 phosphorylation. Simultaneous treatment of cells with selective inhibitors for cAMP-dependent protein kinase (PKA) and Akt completely prevented the increase in eNOS activity by EGCG after 15 min, indicating that both kinases act in concert. Specific phosphatidylinositol-3-OH-kinase inhibitors yielded identical results. Akt inhibition prevented eNOS Ser1179 phosphorylation, whereas inhibition of PKA did not influence Akt and eNOS Ser1179 phosphorylation. Pretreatment of endothelial cells with EGCG for 4 h markedly enhanced the increase in eNOS activity stimulated by Ca-ionomycin, suggesting that Akt accounts for prolonged eNOS activation. Treatment of cells for 72 h with EGCG did not change eNOS protein levels. Our results indicate that EGCG-induced endothelium-dependent vasodilation is primarily based on rapid activation of eNOS by a phosphatidylinositol 3-kinase-, PKA-, and Akt-dependent increase in eNOS activity, independently of an altered eNOS protein content.


Asunto(s)
Catequina/análogos & derivados , Catequina/química , AMP Cíclico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Animales , Aorta/patología , Western Blotting , Catequina/farmacología , Bovinos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Inhibidores de Proteasas/farmacología , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA