Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 118: e220225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38018570

RESUMEN

BACKGROUND: Leishmaniasis, a neglected disease caused by the parasite Leishmania, is treated with drugs associated with high toxicity and limited efficacy, in addition to constant reports of the emergence of resistant parasites. In this context, snake serums emerge as good candidates since they are natural sources with the potential to yield novel drugs. OBJECTIVES: We aimed to show the antileishmanial effects of γCdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, against Leishmania (Leishmania) amazonensis. METHODS: Promastigotes forms were exposed to γCdcPLI, and we assessed the parasite viability and cell cycle, as well as invasion and proliferation assays. FINDINGS: Despite the low cytotoxicity effect on macrophages, our data indicate that γCdcPLI has a direct effect on parasites promoting an arrest in the G1 phase and reduction in the G2/M phase at the highest dose tested. Moreover, this PLA2 inhibitor reduced the parasite infectivity when promastigotes were pre-treated. Also, we demonstrated that the γCdcPLI treatment modulated the host cell environment impairing early and late steps of the parasitism. MAIN CONCLUSIONS: γCdcPLI is an interesting tool for the discovery of new essential targets on the parasite, as well as an alternative compound to improve the effectiveness of the leishmaniasis treatment.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Animales , Humanos , Ratones , Crotalus , Leishmaniasis/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Ratones Endogámicos BALB C
2.
Chembiochem ; 23(18): e202200349, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35839379

RESUMEN

Pentachloropseudilin (PClP) is a reversible and allosteric inhibitor of type 1 myosin. Here, we addressed the impact of PClP treatment of Trypanosoma cruzi and mammalian host cell on the parasite migration, cell adhesion and invasion. We observed that PClP was not toxic to either T. cruzi or host cell. Moreover, treatment of T. cruzi with PClP inhabited parasite motility, host cell adhesion and invasion. Treatment of host cell with PClP also impaired parasite invasion probably by decreasing lysosome migration to the entry site of the parasite. Therefore, PClP treatment impaired fundamental processes necessary for a successful T. cruzi infection.


Asunto(s)
Hidrocarburos Clorados , Trypanosoma cruzi , Animales , Lisosomas , Mamíferos , Miosinas/metabolismo , Pirroles/metabolismo
3.
J Sci Food Agric ; 101(3): 1202-1208, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32789937

RESUMEN

BACKGROUND: Eugenia calycina is an endemic species in the Brazilian savannah (the Cerrado) and it is threatened with extinction. Several species of Eugenia are used as insecticides or insect repellents. No data are available on the larvicidal activity of E. calycina. The chemical composition of the essential oil (EO) from leaves of Eugenia calycina was analyzed by gas chromatography coupled to mass spectrometry (GC-MS) and the larvicidal activity against Aedes aegypti larvae in the third stage of development was studied. RESULTS: Oxygenated and non-oxygenated sesquiterpenes were identified, and the main compounds were bicyclogermacrene, spathulenol, and ß-caryophyllene. The EO was fractionated in a chromatographic column and three compounds were isolated and identified: spathulenol, aromadendrane-4ß,10α-diol, and 1ß-11-dihydroxy-5-eudesmene. It is the first time that the last two compounds have been identified in E. calycina. The exposure times in the larvicidal test were 24 h and 48 h and the LC50 values obtained were 199.3 and 166.4 µg mL-1 . The cytotoxicity of the EO in mammalian cells (HeLa and Vero) was evaluated for 24 and 48 h of incubation. The cytotoxic concentrations of the EO for HeLa and Vero cells (266.8 ± 46.5 and 312.1 ± 42.5 µg mL-1 , respectively) in 48 h of exposure were higher than the LC50 , showing low cytotoxicity at the concentration exhibiting larvicidal activity, resulting in a positive selectivity index. CONCLUSION: These results indicate that the EO of E. calycina showed high activity against the A. aegypti larvae but lower cytotoxicity to mammalian cells. The leaves of E. calycina are therefore a very promising source of natural larvicidal products. © 2020 Society of Chemical Industry.


Asunto(s)
Aedes/efectos de los fármacos , Eugenia/química , Insecticidas/farmacología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Aedes/crecimiento & desarrollo , Animales , Brasil , Chlorocebus aethiops , Cromatografía de Gases y Espectrometría de Masas , Insecticidas/química , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Aceites Volátiles/química , Extractos Vegetales/química , Hojas de la Planta/química , Células Vero
4.
Mem Inst Oswaldo Cruz ; 114: e180571, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31116244

RESUMEN

BACKGROUND: TcP21 is a ubiquitous secreted protein of Trypanosoma cruzi and its recombinant form (rP21) promotes parasite cell invasion and acts as a phagocytosis inducer by activating actin polymerisation in the host cell. OBJECTIVE: Our goal was to evaluate if the additional supplementation of rP21 during a prime/boost/challenge scheme with T. cruzi TCC attenuated parasites could modify the well-known protective behavior conferred by these parasites. METHODS: The humoral immune response was evaluated through the assessment of total anti-T. cruzi antibodies as well as IgG subtypes. IFN-γ, TNF-α and IL-10 were measured in supernatants of splenic cells stimulated with total parasite homogenate or rP21. FINDINGS: Our results demonstrated that, when comparing TCC+rP21 vs. TCC vaccinated animals, the levels of IFN-γ were significantly higher in the former group, while the levels of IL-10 and TNF-α were significantly lower. Further, the measurement of parasite load after lethal challenge showed an exacerbated infection and parasite load in heart and skeletal muscle after pre-treatment with rP21, suggesting the important role of this protein during parasite natural invasion process. MAIN CONCLUSION: Our results demonstrated that rP21 may have adjuvant capacity able to modify the cytokine immune profile elicited by attenuated parasites.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Enfermedad de Chagas/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma cruzi/inmunología , Vacunas Atenuadas/inmunología , Animales , Enfermedad de Chagas/prevención & control , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón-alfa/sangre , Interferón-alfa/inmunología , Interferón gamma/sangre , Interferón gamma/inmunología , Interleucina-10/sangre , Interleucina-10/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Vacunas Atenuadas/administración & dosificación
5.
Bioorg Med Chem ; 26(22): 5816-5823, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30413343

RESUMEN

Leishmaniasis is one of the most important neglected tropical diseases (NTDs) that are especially common among low-income populations in developing regions of Africa, Asia, and the Americas. Many natural products, particularly alkaloids, have been reported to have inhibitory activity against arginase, the key enzyme in the pathology caused by Leishmania sp. In this way, piperidine alkaloids (-)-cassine (1), (-)-spectaline (2), (-)-3-O-acetylcassine (3), and (-)-3-O-acetylspectaline (4) were isolated from Senna spectabilis flowers. These compounds (1/2 and 3/4) initially present as homologous mixtures were separated by high performance liquid chromatography and evaluated against the promastigote phase of Leishmania amazonensis. In addition, molecular docking simulations were implemented in order to probe the binding modes of the ligands 1-4 to the amino acids in the active site of L. amazonensis arginase. Alkaloid 2 (IC50 15.81 µg mL-1) was the most effective against L. amazonensis. Compounds 2 and 4, with larger side chain, were more effective against the parasite than compounds 1 and 3. The cell viability test on Vero cells revealed that compound 2 (CC50 66.67 µg mL-1) was the most toxic. The acetyl group in the 3-O position of the parent structures reduced the leishmanicidal activity and the toxicity of the alkaloids. Further, molecular docking suggested that Asn143 is essential for arginase to interact with (-)-spectaline-derived compounds, which agreed with the IC50 measurements. Our findings revealed that S. spectabilis is an important source of piperidine alkaloids with leishmanicidal activity. Moreover, the natural compound 3 has been isolated for the first time. Experimental investigation combined with theoretical study advances knowledge about the enzyme binding site mode of interaction and contributes to the design of new bioactive drugs against Leishmania infection.


Asunto(s)
Alcaloides/farmacología , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Piperidinas/farmacología , Senna/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Piperidinas/química , Piperidinas/aislamiento & purificación , Relación Estructura-Actividad
6.
Glycobiology ; 24(2): 179-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24225883

RESUMEN

The invasion of host cells by the intracellular protozoan Trypanosoma cruzi requires interactions with host cell molecules, and the replication of the parasite requires escape from a parasitophorous vacuole into the host cell cytosol. Galectin-3, a member of ß-galactosidase-binding lectin family, has numerous extracellular and intracellular functions. In this study, we investigated the role of galectin-3 during the invasion and intracellular trafficking of T. cruzi extracellular amastigotes (EAs). Endogenous galectin-3 from mouse peritoneal macrophages accumulated around the pathogen during cell invasion by EAs. In addition, galectin-3 accumulated around parasites after their escape from the parasitophorous vacuole. Thus, galectin-3 behaved as a novel marker of phagolysosome lysis during the infection of host cells by T. cruzi.


Asunto(s)
Galectina 3/metabolismo , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/patogenicidad , Animales , Transporte Biológico , Células Cultivadas , Citoplasma/parasitología , Células Madre Embrionarias/parasitología , Endocitosis , Humanos , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos C57BL , Unión Proteica
7.
Front Cell Infect Microbiol ; 14: 1412345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988814

RESUMEN

P21 is a protein secreted by all forms of Trypanosoma cruzi (T. cruzi) with recognized biological activities determined in studies using the recombinant form of the protein. In our recent study, we found that the ablation of P21 gene decreased Y strain axenic epimastigotes multiplication and increased intracellular replication of amastigotes in HeLa cells infected with metacyclic trypomastigotes. In the present study, we investigated the effect of P21 in vitro using C2C12 cell lines infected with tissue culture-derived trypomastigotes (TCT) of wild-type and P21 knockout (TcP21-/-) Y strain, and in vivo using an experimental model of T. cruzi infection in BALB/c mice. Our in-vitro results showed a significant decrease in the host cell invasion rate by TcP21-/- parasites as measured by Giemsa staining and cell count in bright light microscope. Quantitative polymerase chain reaction (qPCR) analysis showed that TcP21-/- parasites multiplied intracellularly to a higher extent than the scrambled parasites at 72h post-infection. In addition, we observed a higher egress of TcP21-/- trypomastigotes from C2C12 cells at 144h and 168h post-infection. Mice infected with Y strain TcP21-/- trypomastigotes displayed higher systemic parasitemia, heart tissue parasite burden, and several histopathological alterations in heart tissues compared to control animals infected with scrambled parasites. Therewith, we propose that P21 is important in the host-pathogen interaction during invasion, cell multiplication, and egress, and may be part of the mechanism that controls parasitism and promotes chronic infection without patent systemic parasitemia.


Asunto(s)
Enfermedad de Chagas , Proteínas Protozoarias , Trypanosoma cruzi , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Chagas/parasitología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Ratones Endogámicos BALB C , Parasitemia , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/metabolismo , Virulencia
8.
Microbiol Res ; 277: 127503, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748260

RESUMEN

Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.


Asunto(s)
Lisosomas , Fagocitosis , Lisosomas/microbiología , Fagosomas/metabolismo , Fagosomas/microbiología , Endocitosis , Evasión Inmune
9.
Front Immunol ; 14: 1243480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915581

RESUMEN

Introduction: Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods: In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results: Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion: In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.


Asunto(s)
Enfermedad de Chagas , Toxoplasmosis , Trypanosoma cruzi , Recién Nacido , Humanos , Femenino , Embarazo , Placenta/patología , Interleucina-8 , Toxoplasmosis/patología , Enfermedad de Chagas/patología , Proteínas Recombinantes
10.
Int J Med Microbiol ; 302(1): 19-32, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21783413

RESUMEN

The facultative intracellular bacterial pathogens Listeria monocytogenes and Salmonella enterica have evolved multiple strategies to invade a large panel of mammalian cells. These pathogens use the host cell actin system for invasion and became a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. The key signaling component that these pathogens use to orchestrate actin remodeling is the Arp2/3 complex, which is related to polymerization of actin filaments. These bacterial pathogens are able to trigger distinct invasion mechanisms. On the one hand, L. monocytogenes invade a host cell in a way dependent on the specific interactions between bacterial and host cell proteins, which in turn activate the host cell actin polymerizing machinery that culminates with bacterial internalization. Also, Listeria escapes from the newly formed parasitophorous vacuole and moves among adjacent cells by triggering actin polymerization. On the other hand, Salmonella invades a host cell by delivering into the cytoplasm virulence factors which directly interact with host regulators of actin polymerization which leads to bacterial uptake. Moreover, Salmonella avoids vacuole lyses and modulates the early and late endosomal markers presented in the vacuole membrane. This mini-review focuses on the different pathways that L. monocytogenes and S. enterica activate to modulate the actin cytoskeleton in order to invade, to form the parasitophorous vacuole, and to migrate inside host cells.


Asunto(s)
Actinas/metabolismo , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/patogenicidad , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Listeria monocytogenes/fisiología , Polimerizacion , Salmonella enterica/fisiología , Transducción de Señal , Vacuolas/metabolismo , Vacuolas/microbiología , Factores de Virulencia/metabolismo
11.
Front Cell Infect Microbiol ; 12: 799668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252026

RESUMEN

P21 is an immunomodulatory protein expressed throughout the life cycle of Trypanosoma cruzi, the etiologic agent of Chagas disease. In vitro and in vivo studies have shown that P21 plays an important role in the invasion of mammalian host cells and establishment of infection in a murine model. P21 functions as a signal transducer, triggering intracellular cascades in host cells and resulting in the remodeling of the actin cytoskeleton and parasite internalization. Furthermore, in vivo studies have shown that P21 inhibits angiogenesis, induces inflammation and fibrosis, and regulates intracellular amastigote replication. In this study, we used the CRISPR/Cas9 system for P21 gene knockout and investigated whether the ablation of P21 results in changes in the phenotypes associated with this protein. Ablation of P21 gene resulted in a lower growth rate of epimastigotes and delayed cell cycle progression, accompanied by accumulation of parasites in G1 phase. However, P21 knockout epimastigotes were viable and able to differentiate into metacyclic trypomastigotes, which are infective to mammalian cells. In comparison with wild-type parasites, P21 knockout cells showed a reduced cell invasion rate, demonstrating the role of this protein in host cell invasion. However, there was a higher number of intracellular amastigotes per cell, suggesting that P21 is a negative regulator of amastigote proliferation in mammalian cells. Here, for the first time, we demonstrated the direct correlation between P21 and the replication of intracellular amastigotes, which underlies the chronicity of T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Citoesqueleto de Actina/fisiología , Animales , Enfermedad de Chagas/parasitología , Técnicas de Inactivación de Genes , Estadios del Ciclo de Vida/fisiología , Mamíferos/genética , Ratones , Trypanosoma cruzi/fisiología
12.
Parasitol Res ; 109(2): 431-40, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21331788

RESUMEN

An experimental model for chronic Chagas disease was developed to investigate whether reactivation is influenced by the genetic origin of Trypanosoma cruzi isolates. In addition, we examined whether the distribution of T. cruzi stage-specific epitopes, as defined by monoclonal antibodies (Mab), raised against mammalian-stage parasite forms, exhibited comparable distribution patterns in Calomys callosus myocardium during the acute phase and after reactivation of the infection. Animals were infected with parasites of the G (T. cruzi I), Y (T.cruzi II) or CL strains (T. cruzi VI). Heart sections were labelled with the Mabs 2C2, 1D9, 2B7, 3B9 and 4B9, which react with carbohydrate epitopes on Ssp-4, a major amastigote surface glycoprotein. Mab 1D9 and 2B7 showed polymorphic distributions over amastigotes among animals infected with the G, Y or CL strains. Mab 3B2, which recognises a non-carbohydrate epitope in flagellated forms, showed an active state of parasite dissemination in the myocardium of C. callosus that were infected with Y or CL strains and then immunosuppressed after 6 or 12 months. C. callosus infected with the G strain (T. cruzi I) displayed absence of amastigote nests in the heart after immunosuppression. Our results permit us to suggest that parasites of the G strain may be more sensitive to the immune response, since we could not find either evidence of parasitemia or amastigote nests. Conversely, parasites from the Y and CL strains appeared able to escape the immune response, as evidenced by an inflammatory infiltrate and disseminated infection after immunosuppression.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/parasitología , Parasitemia/parasitología , Sigmodontinae/parasitología , Trypanosoma cruzi/inmunología , Trypanosoma cruzi/aislamiento & purificación , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/patología , Enfermedad de Chagas/inmunología , Modelos Animales de Enfermedad , Epítopos/inmunología , Terapia de Inmunosupresión , Parasitemia/inmunología , Enfermedades de los Roedores/inmunología , Enfermedades de los Roedores/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/análisis
13.
Sci Rep ; 11(1): 12709, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135407

RESUMEN

Congenital toxoplasmosis is represented by the transplacental passage of Toxoplasma gondii from the mother to the fetus. Our studies demonstrated that T. gondii developed mechanisms to evade of the host immune response, such as cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) induction, and these mediators can be produced/stored in lipid droplets (LDs). The aim of this study was to evaluate the role of COX-2 and LDs during T. gondii infection in human trophoblast cells and villous explants. Our data demonstrated that COX-2 inhibitors decreased T. gondii replication in trophoblast cells and villous. In BeWo cells, the COX-2 inhibitors induced an increase of pro-inflammatory cytokines (IL-6 and MIF), and a decrease in anti-inflammatory cytokines (IL-4 and IL-10). In HTR-8/SVneo cells, the COX-2 inhibitors induced an increase of IL-6 and nitrite and decreased IL-4 and TGF-ß1. In villous explants, the COX-2 inhibitors increased MIF and decreased TNF-α and IL-10. Furthermore, T. gondii induced an increase in LDs in BeWo and HTR-8/SVneo, but COX-2 inhibitors reduced LDs in both cells type. We highlighted that COX-2 is a key factor to T. gondii proliferation in human trophoblast cells, since its inhibition induced a pro-inflammatory response capable of controlling parasitism and leading to a decrease in the availability of LDs, which are essentials for parasite growth.


Asunto(s)
Vellosidades Coriónicas/parasitología , Ciclooxigenasa 2/metabolismo , Gotas Lipídicas/metabolismo , Toxoplasma/crecimiento & desarrollo , Trofoblastos/parasitología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Vellosidades Coriónicas/inmunología , Vellosidades Coriónicas/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Interacciones Huésped-Parásitos , Humanos , Interleucinas/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Nitritos/metabolismo , Toxoplasma/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Trofoblastos/inmunología , Trofoblastos/metabolismo
14.
Front Cell Dev Biol ; 8: 569729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195200

RESUMEN

Trypanosoma cruzi P21 is a protein secreted by the parasite that plays biological roles directly involved in the progression of Chagas disease. The recombinant protein (rP21) demonstrates biological properties, such as binding to CXCR4 receptors in macrophages, chemotactic activity of immune cells, and inhibiting angiogenesis. This study aimed to verify the effects of rP21 interaction with CXCR4 from non-tumoral cells (MCF-10A) and triple-negative breast cancer cells (MDA-MB-231). Our data showed that the MDA-MB-231 cells expressed higher levels of CXCR4 than did the non-tumor cell lines. Besides, cytotoxicity assays using different concentrations of rP21 showed that the recombinant protein was non-toxic and was able to bind to the cell membranes of both cell lineages. In addition, rP21 reduced the migration and invasion of MDA-MB-231 cells by the downregulation of MMP-9 gene expression. In addition, treatment with rP21 blocked the cell cycle, arresting it in the G1 phase, mainly in MDA-MB-231 cells. Finally, rP21 prevents the chemotaxis and proliferation induced by CXCL12. Our data showed that rP21 binds to the CXCR4 receptors in both cells, downregulates CXCR4 gene expression, and decreases the receptors in the cytoplasm of MDA-MB-231 cells, suggesting CXCR4 internalization. This internalization may explain the desensitization of the receptors in these cells. Thus, rP21 prevents migration, invasion, and progression in MDA-MB-231 cells.

15.
Front Immunol ; 11: 1010, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655546

RESUMEN

Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Malaria/parasitología , Mioblastos/parasitología , Miocardio/patología , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Enfermedad Aguda , Animales , Línea Celular , Interacciones Huésped-Parásitos , Humanos , Evasión Inmune , Péptidos y Proteínas de Señalización Intercelular/genética , Interferón gamma/metabolismo , Malaria/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Carga de Parásitos , Proteínas Protozoarias/genética
16.
Immunobiology ; 225(3): 151904, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31959539

RESUMEN

B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas' disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cγ1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.


Asunto(s)
Actinas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Caspasa 7/metabolismo , Interacciones Huésped-Patógeno , Fosfolipasa C gamma/metabolismo , Trypanosoma cruzi/inmunología , Muerte Celular , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Humanos , Proteolisis
17.
Biochem Biophys Res Commun ; 384(2): 265-9, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19406103

RESUMEN

Trypanosoma cruzi is an obligate intracellular organism in vertebrate hosts. Lysosomes are involved in parasite invasion. LAMP-1 and LAMP-2 are the most abundant glycoproteins of the lysosomal membrane. This study is the first report on the invasion of T. cruzi extracellular amastigotes (EA) in single LAMP-1 or LAMP-2 knockouts, respectively, or in two independent LAMP-1/2 double-knockout cell lines. When compared to their respective wild type clones, the EA show higher infectivity in LAMP-2 knockouts, but no difference was seen in LAMP-1 knockout cells. Similarly, EA invasion rate was higher for one of the double knockout clones but not for the other. Higher lysosomal exocytosis correlated with a higher invasion rate and early lysosomal marker acquisition. These findings suggest that lysosomal exocytosis is important to EA cell invasion. Also, phagolysosome maturation in knockout cell lines differed from previous results revealing that EA enter cells by a mechanism other than receptor-mediated phagocytosis.


Asunto(s)
Enfermedad de Chagas/fisiopatología , Exocitosis , Proteínas de Membrana de los Lisosomas/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/fisiología , Lisosomas/parasitología , Trypanosoma cruzi , Animales , Línea Celular , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología , Exocitosis/genética , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/metabolismo , Ratones , Ratones Noqueados
18.
Biochem Biophys Res Commun ; 378(3): 656-61, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19061866

RESUMEN

Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP(2) and PIP(3) to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Actinas/metabolismo , Interacciones Huésped-Parásitos , Fosfatidilinositol 3-Quinasas/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Animales , Chlorocebus aethiops , Fosfatidilinositol 4,5-Difosfato/metabolismo , Toxoplasma/ultraestructura , Toxoplasmosis/parasitología , Vacuolas/metabolismo , Células Vero
19.
Inflammation ; 42(4): 1360-1369, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30887397

RESUMEN

IL-9 is a pleiotropic cytokine, recently recognized as belonging to Th9 cells that are involved in various pathologies. We aimed to evaluate the role of IL-9 in the course of hepatic and renal fibrosis. Female C57BL/6 mice were treated subcutaneously with IL-9 10 ng/mouse and 20 ng/mouse for 40 days, alternating every 5 days each application, the negative control of which was treated with PBS and positive control with CCL4. IL-9 demonstrated fibrogenic activity, leading to increased collagen I and III deposition in both liver and kidney, as well as triggering lobular hepatitis. In addition, IL-9 induced an inflammatory response with recruitment of lymphocytes, neutrophils, and macrophages to both organs. The inflammation was present in the region of the portal and parenchymal zone in the liver and in the cortical and medullary zone in the kidney. IL-9 deregulated liver and kidney antioxidant activities. Our results showed that IL-9 was able to promote hepatorenal dysfunction. Moreover, IL-9 poses as a promising target for therapeutic interventions.


Asunto(s)
Fibrosis/etiología , Interleucina-9/efectos adversos , Riñón/patología , Hígado/patología , Animales , Colágeno/metabolismo , Femenino , Inflamación/inducido químicamente , Inflamación/patología , Riñón/fisiología , Hígado/fisiología , Ratones , Ratones Endogámicos C57BL
20.
J Inorg Biochem ; 195: 1-12, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30861423

RESUMEN

Some metallodrugs that exhibit interesting biological activity contain transition metals such as ruthenium, and have been extensively exploited because of their antiparasitic potential. In previous study, we reported the remarkable anti-Leishmania activity of precursor cis-[RuIICl2(dppm)2], where dppm = bis(diphenylphosphino)methane, and new ruthenium(II) complexes, cis-[RuII(η2-O2CC10H13)(dppm)2]PF6 (bbato), cis-[RuII(η2-O2CC7H7S)(dppm)2]PF6 (mtbato) and cis-[RuII(η2-O2CC7H7O2)(dppm)2]PF6 (hmxbato) against some Leishmania species. In view of the promising activity of the hmxbato complex against Leishmania (Leishmania) amazonensis promastigotes, the present work investigated the possible parasite death mechanism involved in the action of this hmxbato and its precursor. We report, for the first time, that hmxbato and precursor promoted an increase in reactive oxygen species production, depolarization of the mitochondrial membrane, DNA fragmentation, formation of a pre-apoptotic peak, alterations in parasite morphology and formation of autophagic vacuoles. Taken together, our results suggest that these ruthenium complexes cause parasite death by apoptosis. Thus, this work provides relevant knowledge on the activity of ruthenium(II) complexes against L. (L.) amazonensis. Such information will be essential for the exploitation of these complexes as future candidates for cutaneous leishmaniasis treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejos de Coordinación/farmacología , Leishmania/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Tripanocidas/farmacología , Proliferación Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , ADN Protozoario/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Rutenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA