Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Behav Pharmacol ; 30(1): 79-88, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30633724

RESUMEN

Neuropathic pain is driven by abnormal peripheral and central processing, and treatments are insufficiently effective. Antibodies against nerve growth factor (anti-NGF) have been investigated as a potent analgesic treatment for numerous conditions. However, the peripheral and brain effects of anti-NGF in neuropathic pain remain unknown. We examined the effectiveness of anti-NGF in reducing chronic pain by local administration in a rat model of sciatic constriction injury (CCI). NGF and substance P in the dorsal root ganglion (DRG) and spinal cord were evaluated. Neuronal activation was measured using c-Fos in the anterior cingulate cortex and ventrolateral periaqueductal gray. At 14 days after CCI, anti-NGF promoted a significant dose-dependent improvement in mechanical threshold, thermal withdrawal latency, and cold sensitivity, lasting for 5 h. NGF upregulation in the DRG and spinal cord after CCI was decreased by anti-NGF, while substance P was increased only in the DRG, and the treatment reduced it. Anti-NGF induced a significant reduction of neuronal activation in the anterior cingulate cortex, but not in the ventrolateral periaqueductal gray. This study provides the first evidence of the anti-NGF effects on brain activity. Thus, our findings suggest that anti-NGF improves chronic neuropathic pain, acting directly on peripheral sensitization and indirectly on central sensitization.


Asunto(s)
Anticuerpos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor de Crecimiento Nervioso/inmunología , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/patología , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino , Dimensión del Dolor , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Sustancia P/metabolismo , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
2.
Brain Behav Immun Health ; 35: 100723, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38292321

RESUMEN

Post-traumatic headache (PTH) is a debilitating condition that affects individuals with different levels of traumatic brain injury (TBI) severity. The difficulties in developing an effective treatment are related to a lack of understanding the complicated mechanisms and neurobiological changes in brain function after a brain injury. Preclinical studies have indicated that peripheral and central sensitization of the trigeminal nociceptive pathways contributes to PTH. While recent brain imaging studies have uncovered widespread changes in brain functional connectivity following trauma, understanding exactly how these networks contribute to PTH after injury remains unknown. Stimulation of peripheral (trigeminal or vagus) nerves show promising efficacies in PTH experimental animals, likely mediated by influencing TBI-induced pathological plasticity by decreasing neuroinflammation and neuronal apoptosis. Non-invasive brain stimulations, such as transcranial magnetic or direct current stimulations, show analgesia for multiple chronic pain conditions, including PTH. Better mechanistic understanding of analgesia achieved by neuromodulations can define peripheral and central mechanisms involved in the development, the resolution, and the management of PTH.

3.
Biomedicines ; 12(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791084

RESUMEN

Diffuse noxious inhibitory controls (DNICs), or the pain inhibits pain phenomenon, refer to reduced pain-like behaviors that are displayed following a noxious conditioning stimulus located far from the test stimulus and have also been referred to as "descending control of nociception" when measured in awake-behaving animals. In this study, we sought to determine the impact of moderate long-term exercise on the DCN response and determine if this effect differed across age and sex. After a six-week exercise program consisting of 30 min of moderate treadmill running 5 days a week, the animals' forepaws were injected with capsaicin, and DCN responses were assessed using thermal withdrawal latencies of the hind paw. Young, exercised male and female rats displayed prolonged DCN responses relative to their sedentary counterparts, with the young exercised male group displaying longer-lasting DCN facilitation than the young exercised females. Exercise did not impact DCN responses in either male or female aged rats. Additionally, the serum testosterone levels did not change following exercise in any group. Importantly, the levels of corticosterone did not change following the exercise program, indicating that changes in the DCN response are not due to stress-induced analgesia. Our findings suggest that moderate exercise can facilitate the DCN response in young animals, even when this exercise does not change the levels of serum testosterone.

4.
Front Pain Res (Lausanne) ; 5: 1372942, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721062

RESUMEN

This study investigates the impact of combining psychophysical stress, induced by forced swim (FSS), with masseter inflammation on reactive oxygen species (ROS) production in trigeminal ganglia (TG), TRPA1 upregulation in TG, and mechanical hyperalgesia. In a rat model, we demonstrate that FSS potentiates and prolongs CFA-induced ROS upregulation within TG. The ROS levels in CFA combined with FSS group surpass those in the CFA-only group on days 4 and 28 post-treatment. FSS also enhances TRPA1 upregulation in TG, with prolonged expression compared to CFA alone. Furthermore, CFA-induced mechanical hyperalgesia is significantly prolonged by FSS, persisting up to day 28. PCR array analyses reveal distinct alterations in oxidative stress genes under CFA and CFA combined with FSS conditions, suggesting an intricate regulation of ROS within TG. Notably, genes like Nox4, Hba1, Gpx3, and Duox1 exhibit significant changes, providing potential targets for managing oxidative stress and inflammatory pain. Western blot and immunohistochemistry confirm DUOX1 protein upregulation and localization in TG neurons, indicating a role in ROS generation under inflammatory and stress conditions. This study underscores the complex interplay between psychophysical stress, inflammation, and oxidative stress in the trigeminal system, offering insights into novel therapeutic targets for pain management.

5.
Biomedicines ; 12(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39335519

RESUMEN

Knee osteoarthritis (OA) often causes chronic pain that disproportionately affects females. Proinflammatory cytokines TNF-α, IL-1ß, and IL-6 are key effectors of OA pathological changes. Green light shows potential as an alternative intervention for various pain conditions. However, no studies have investigated green light's analgesic effects in both sexes in chronic knee OA. We induced unilateral knee OA with intra-articular injection of monoiodoacetate (MIA) in male and female Sprague-Dawley rats. Two days post-injection, the rats were exposed to green-light-emitting diodes (GLED) or ambient room light eight hours daily for 24 days. Knee mechanical sensitivity was assessed using a small animal algometer. Blood serum concentrations of TNF-α, IL-1ß, IL-6, and IL-10 were quantified at baseline and 23 days post-injection. MIA injection decreased the knee mechanical thresholds of the male and female rats. GLED exposure attenuated mechanical hypersensitivity in both sexes compared to the controls; however, GLED-induced analgesia occurred sooner and with greater magnitude in males than in females. In both sexes, the analgesic effects of green light lasted 5 days after the final GLED session. Finally, GLED exposure reversed the elevation of serum proinflammatory cytokines. These findings suggest that GLED exposure reduces primary hyperalgesia in OA, potentially by lowering proinflammatory cytokines, and indicate sex differences in GLED-induced analgesia.

6.
Pain ; 165(3): 698-706, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756658

RESUMEN

ABSTRACT: Temporomandibular disorder (TMD) and irritable bowel syndrome (IBS) are 2 chronic overlapping pain conditions (COPCs) that present with significant comorbidity. Both conditions are more prevalent in women and are exacerbated by stress. While peripheral mechanisms might contribute to pain hypersensitivity for each individual condition, mechanisms underlying the comorbidity are poorly understood, complicating pain management when multiple conditions are involved. In this study, longitudinal behavioral and functional MRI-based brain changes have been identified in an animal model of TMD-like pain (masseter muscle inflammation followed by stress) that induces de novo IBS-like comorbid visceral pain hypersensitivity in rats. In particular, data indicate that increased activity in the insula and regions of the reward and limbic systems are associated with more pronounced and longer-lasting visceral pain behaviors in female rats, while the faster pain resolution in male rats may be due to increased activity in descending pain inhibitory pathways. These findings suggest the critical role of brain mechanisms in chronic pain conditions and that sex may be a risk factor of developing COPCs.


Asunto(s)
Dolor Crónico , Síndrome del Colon Irritable , Dolor Visceral , Humanos , Femenino , Ratas , Masculino , Animales , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/epidemiología , Dolor Visceral/complicaciones , Estudios Longitudinales , Caracteres Sexuales , Comorbilidad , Dolor Crónico/complicaciones , Enfermedad Crónica , Encéfalo/diagnóstico por imagen
7.
Aging Cell ; 20(2): e13292, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33400367

RESUMEN

Old age and female sex are risk factors for the development of osteoarthritis (OA) and chronic pain. We investigated the effects of sex and age on pain modulatory networks in a healthy state and during OA progression. We used functional MRI to determine the effects of sex and age on periaqueductal gray functional connectivity (PAG FC) in a healthy state (pre-OA) and during the early and late phases of monosodium iodoacetate-induced OA in rats. We then examined how sex and age affect longitudinal changes in PAG FC in OA. In a healthy state, females exhibited more widespread PAG FC than males, and this effect was exaggerated with aging. Young males had moderate PAG FC changes during the early phase but recruited additional brain regions, including the rostral anterior cingulate cortex (ACC), during the late phase. Young females exhibited widespread PAG FC in the early phase, which includes connections to insula, caudal ACC, and nucleus accumbens (NAc). Older groups had strong PAG FC with fewer regions in the early phase, but they recruited additional brain regions, including NAc, in the late phase. Overall, our findings show that PAG FC is modulated by sex and age in a healthy state. A widespread PAG network in the early phase of OA pain may contribute to the transition from acute to chronic OA pain and the increased risk of developing chronic pain for females. Enhanced PAG FC with the reward system may represent a potential mechanism underlying chronic OA pain in elderly patients.


Asunto(s)
Osteoartritis/metabolismo , Dolor/metabolismo , Factores de Edad , Animales , Femenino , Masculino , Ratas , Ratas Endogámicas F344 , Factores Sexuales
8.
Front Neurosci ; 15: 698164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658757

RESUMEN

Burning mouth syndrome (BMS) is a chronic orofacial pain condition that mainly affects postmenopausal women. BMS type I patients report little to no spontaneous pain in the morning and increases in pain through the day, peaking in the afternoon. Quantitative sensory testing (QST) findings from BMS type 1 patients are inconsistent as they fail to capture this temporal variation. We examined how QST in BMS type 1 (n = 18) compared to healthy participants (n = 33) was affected by time of day. QST of the face and forearm included warmth detection threshold (WDT), cold detection threshold (CDT), and heat pain thresholds (HPT), ratings of suprathreshold heat, and pressure pain thresholds (PPT), and was performed twice: once in the morning and once in the afternoon. Compared to healthy participants, BMS patients had higher pain sensitivity to phasic heat stimuli at most temperatures (35°C U = 126.5, p = 0.0006, 39°C U = 186.5, p = 0.0386, 41°C U = 187.5, p = 0.0412, 43°C U = 171, p = 0.0167, 45°C U = 168.5, p = 0.0146) on the forearm, but no differences in pain thresholds (HPT and PPT) regardless of time of day or body area tested. BMS patients had higher WDT (U = 123, p = 0.0172), and lower CDT (U = 98, p = 0.0021) of the forearm and lower WDT of the face (U = 55, p = 0.0494). The differences in forearm WDT (U = 71.5, p = 0.0113) and CDT (U = 70, p = 0.0096) were most pronounced in the morning. In summary, BMS type I patients had increased pain sensitivity on the forearm, but no differences in pain thresholds on the face or forearm. Patients also showed altered thermal sensitivity, which depended on body area tested (heightened in the orofacial region but blunted on the forearm), and was more pronounced in the morning plausibly due to hypervigilance.

9.
Pain ; 161(6): 1371-1380, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31977940

RESUMEN

Endogenous pain inhibition is less efficient in chronic pain patients. Diffuse noxious inhibitory control (DNIC), a form of endogenous pain inhibition, is compromised in women and older people, making them more vulnerable to chronic pain. However, the underlying mechanisms remain unclear. Here, we used a capsaicin-induced DNIC test and resting-state functional MRI to investigate the impact of aging and sex on endogenous pain inhibition and associated brain circuitries in healthy rats. We found that DNIC was less efficient in young females compared with young males. Diffuse noxious inhibitory control response was lost in old rats of both sexes, but the brain networks engaged during DNIC differed in a sex-dependent manner. Young males had the most efficient analgesia with the strongest connectivity between anterior cingulate cortex (ACC) and periaqueductal gray (PAG). The reduced efficiency of DNIC in young females seemed to be driven by widespread brain connectivity. Old males showed increased connectivity between PAG, raphe nuclei, pontine reticular nucleus, and hippocampus, which may not be dependent on connections to ACC, whereas old females showed increased connectivity between ACC, PAG, and more limbic regions. These findings suggest that distinct brain circuitries including the limbic system may contribute to higher susceptibility to pain modulatory deficits in the elderly population, and sex may be a risk factor for developing age-related chronic pain.


Asunto(s)
Encéfalo , Control Inhibidor Nocivo Difuso , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Inhibición Psicológica , Imagen por Resonancia Magnética , Masculino , Sustancia Gris Periacueductal/diagnóstico por imagen , Ratas
10.
J Gerontol A Biol Sci Med Sci ; 75(8): 1465-1472, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412104

RESUMEN

In this study, we investigated age and sex differences in acute and chronic pain in rats. Groups of young (3-6 months) and aged (20-24 months) male and female Fischer 344 rats were used to assess basal thermal and mechanical thresholds, capsaicin-induced acute nocifensive responses and c-Fos expression in the spinal cord, and monoiodoacetate (MIA)-induced knee osteoarthritis (OA)-like pain responses. There was a significant sex, but not age, effect on thermal threshold on the hindpaw and mechanical threshold on the knee joint. No significant age and sex differences in capsaicin-induced nocifensive and c-Fos responses were observed. MIA induced a greater peak reduction of weight-bearing responses in aged males than young rats. Aged females developed the most profound weight-bearing deficit. With knee joint sensitivity as a primary outcome measure, MIA induced more pronounced and longer-lasting hyperalgesia in older rats, with aged female rats showing the worst effect. These data suggest that age may not have significant effect on acute nociceptive processing, but it significantly impacts OA-like pain, making aged rats, especially females, more vulnerable to chronic pain conditions. These preclinical models should provide important tools to investigate basic mechanisms underlying the impact of age and sex in chronic pain conditions.


Asunto(s)
Envejecimiento/fisiología , Artritis Experimental/fisiopatología , Conducta Animal/fisiología , Hiperalgesia/fisiopatología , Animales , Capsaicina/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Ácido Yodoacético/farmacología , Masculino , Dimensión del Dolor , Umbral del Dolor , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Endogámicas F344 , Factores Sexuales , Médula Espinal/metabolismo , Soporte de Peso/fisiología
11.
Pain Rep ; 4(4): e732, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579844

RESUMEN

Neuroimaging of pain in animals allows us to better understand mechanisms of pain processing and modulation. In this review, we discuss recently published brain imaging studies in rats, mice, and monkeys, including functional magnetic resonance imaging (MRI), manganese-enhanced MRI, positron emission tomography, and electroencephalography. We provide an overview of innovations and limitations in neuroimaging techniques, as well as results of functional brain imaging studies of pain from January 1, 2016, to October 10, 2018. We then discuss how future investigations can address some bias and gaps in the field. Despite the limitations of neuroimaging techniques, the 28 studies reinforced that transition from acute to chronic pain entails considerable changes in brain function. Brain activations in acute pain were in areas more related to the sensory aspect of noxious stimulation, including primary somatosensory cortex, insula, cingulate cortex, thalamus, retrosplenial cortex, and periaqueductal gray. Pharmacological and nonpharmacological treatments modulated these brain regions in several pain models. On the other hand, in chronic pain models, brain activity was observed in regions commonly associated with emotion and motivation, including prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, basal ganglia, and nucleus accumbens. Neuroimaging of pain in animals holds great promise for advancing our knowledge of brain function and allowing us to expand human subject research. Additional research is needed to address effects of anesthesia, analysis approaches, sex bias and omission, and potential effects of development and aging.

12.
Pain ; 160(9): 1933-1945, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31045749

RESUMEN

Sickle cell disease (SCD) is a medical condition in which chronic pain is common and negatively impacts psychosocial function and quality of life. Although the brain mechanisms underlying chronic pain are well studied in other painful conditions, the brain mechanisms underlying chronic pain and the associated psychosocial comorbidities are not well established in SCD. A growing literature demonstrates the effect of treatment of chronic pain, including pharmacological and nonpharmacological treatments, on brain function. The present systematic review aimed to (1) determine the effects of chronic pain and psychosocial comorbidities on brain function of patients with SCD; (2) summarize pharmacological and nonpharmacological approaches to treat these symptoms; and (3) identify areas for further investigation of potential beneficial effects of treatments on brain function. Titles were screened using predefined criteria, including SCD, and abstracts and full texts were reviewed by 2 independent reviewers. A total of 1167 SCD articles were identified, and 86 full articles were included covering 3 sections: chronic pain (4 studies), psychosocial comorbidities (11 studies), and pharmacological and nonpharmacological treatments (71 studies). Neuroimaging evidence demonstrates aberrant neural processing related to chronic pain and psychosocial comorbidities in SCD beyond ischemic stroke and cerebral hemorrhage. Although neuroimaging studies show an important role for psychological factors, pain management is nearly exclusively based on opioids. Behavior therapy seems useful to improve psychological symptoms as well as chronic pain and quality of life. Further investigation is required with larger cohorts, matched controls, and examination of treatment-related neural mechanisms.


Asunto(s)
Anemia de Células Falciformes/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Dolor Crónico/diagnóstico por imagen , Dolor Crónico/terapia , Neuroimagen/métodos , Manejo del Dolor/métodos , Anemia de Células Falciformes/epidemiología , Encéfalo/fisiología , Dolor Crónico/epidemiología , Comorbilidad , Humanos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Manejo del Dolor/psicología , Resultado del Tratamiento
13.
Behav Brain Res ; 349: 91-97, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29733874

RESUMEN

Diffuse noxious inhibitory control (DNIC), which involves endogenous pain modulation, has been investigated as a potential mechanism for the differences in pain modulation observed between men and women, though the literature shows contradictory findings. We used a capsaicin-induced DNIC behavioral assay and resting state functional magnetic resonance imaging (rsfMRI) to assess the effect of testosterone on pain modulation and related brain circuitry in rats. We hypothesized that testosterone is required for DNIC that leads to efficient pain inhibition by increasing descending pain modulation. Male, female, and orchidectomized (GDX) male rats had a capsaicin injection into the forepaw to induce DNIC and mechanical thresholds were observed on the hindpaw. rsfMRI scans were acquired before and after capsaicin injection to analyze the effects of DNIC on periaqueductal gray (PAG), anterior cingulate cortex (ACC) and nucleus accumbens (NAc) connectivity to the whole brain. The strength of DNIC was higher in males compared to females and GDX males. PAG connectivity with prelimbic cortex (PrL), ACC and insula was stronger in males compared to females and GDX males, whereas females and GDX males had increased connectivity between the right ACC, hippocampus and thalamus. GDX males also showed a stronger connectivity between right ACC and NAc, and right NAc with PrL, ACC, insula and thalamus. Our findings suggest that testosterone plays a key role in reinforcing the endogenous pain inhibitory system, while circuitries related to reward and emotion are more strongly recruited in the absence of testosterone.


Asunto(s)
Encéfalo/metabolismo , Control Inhibidor Nocivo Difuso/fisiología , Testosterona/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo , Orquiectomía , Ratas Sprague-Dawley , Descanso , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA