Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849365

RESUMEN

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Animales , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Femenino , Malaria Falciparum/prevención & control , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Antígenos de Protozoos/inmunología , Ratas , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Monoclonales/inmunología , Humanos , Epítopos/inmunología , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo
2.
Top Curr Chem ; 328: 241-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22076079

RESUMEN

The maintenance of the levels and correct folding state of proteins (proteostasis) is a fundamental prerequisite for life. Life has evolved complex mechanisms to maintain proteostasis and many of these that operate inside cells are now well understood. The same cannot yet be said of corresponding processes in extracellular fluids of the human body, where inappropriate protein aggregation is known to underpin many serious diseases such as Alzheimer's disease, type II diabetes and prion diseases. Recent research has uncovered a growing family of abundant extracellular chaperones in body fluids which appear to selectively bind to exposed regions of hydrophobicity on misfolded proteins to inhibit their toxicity and prevent them from aggregating to form insoluble deposits. These extracellular chaperones are also implicated in clearing the soluble, stabilized misfolded proteins from body fluids via receptor-mediated endocytosis for subsequent lysosomal degradation. Recent work also raises the possibility that extracellular chaperones may play roles in modulating the immune response. Future work will better define the in vivo functions of extracellular chaperones in proteostasis and immunology and pave the way for the development of new treatments for serious diseases.


Asunto(s)
Chaperonas Moleculares/metabolismo , Endocitosis , Humanos , Pliegue de Proteína
3.
PLoS One ; 17(8): e0273106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037183

RESUMEN

The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Anticuerpos Antiprotozoarios , Formación de Anticuerpos , Antígenos de Protozoos , Biomarcadores/metabolismo , Humanos , Análisis por Matrices de Proteínas , Proteómica , Proteínas Recombinantes/metabolismo
4.
Cell Rep Med ; 2(3): 100207, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33763653

RESUMEN

Interactions between B cells and CD4+ T follicular helper (Tfh) cells are key determinants of humoral responses. Using samples from clinical trials performed with the malaria vaccine candidate antigen Plasmodium falciparum merozoite protein (PfRH5), we compare the frequency, phenotype, and gene expression profiles of PfRH5-specific circulating Tfh (cTfh) cells elicited by two leading human vaccine delivery platforms: heterologous viral vector prime boost and protein with AS01B adjuvant. We demonstrate that the protein/AS01B platform induces a higher-magnitude antigen-specific cTfh cell response and that this correlates with peak anti-PfRH5 IgG concentrations, frequency of PfRH5-specific memory B cells, and antibody functionality. Furthermore, our data indicate a greater Th2/Tfh2 skew within the polyfunctional response elicited following vaccination with protein/AS01B as compared to a Th1/Tfh1 skew with viral vectors. These data highlight the impact of vaccine platform on the cTfh cell response driving humoral immunity, associating a high-magnitude, Th2-biased cTfh response with potent antibody production.


Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Proteínas Portadoras/inmunología , Inmunidad Humoral/efectos de los fármacos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Adolescente , Adulto , Linfocitos B/citología , Linfocitos B/inmunología , Proteínas Portadoras/administración & dosificación , Proteínas Portadoras/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/inmunología , Humanos , Inmunogenicidad Vacunal , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-5/genética , Interleucina-5/inmunología , Lípido A/administración & dosificación , Lípido A/análogos & derivados , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Receptores CXCR5/genética , Receptores CXCR5/inmunología , Saponinas/administración & dosificación , Células T Auxiliares Foliculares/citología , Células T Auxiliares Foliculares/inmunología , Células Th2/citología , Células Th2/inmunología , Vacunación , Vacunas de Subunidad , Virus Vaccinia/genética , Virus Vaccinia/inmunología
5.
Top Curr Chem ; 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-21516385

RESUMEN

The maintenance of the levels and correct folding state of proteins (proteostasis) is a fundamental prerequisite for life. Life has evolved complex mechanisms to maintain proteostasis and many of these that operate inside cells are now well understood. The same cannot yet be said of corresponding processes in extracellular fluids of the human body, where inappropriate protein aggregation is known to underpin many serious diseases such as Alzheimer's disease, type II diabetes and prion diseases. Recent research has uncovered a growing family of abundant extracellular chaperones in body fluids which appear to selectively bind to exposed regions of hydrophobicity on misfolded proteins to inhibit their toxicity and prevent them from aggregating to form insoluble deposits. These extracellular chaperones are also implicated in clearing the soluble, stabilized misfolded proteins from body fluids via receptor-mediated endocytosis for subsequent lysosomal degradation. Recent work also raises the possibility that extracellular chaperones may play roles in modulating the immune response. Future work will better define the in vivo functions of extracellular chaperones in proteostasis and immunology and pave the way for the development of new treatments for serious diseases.

6.
Sci Rep ; 10(1): 14243, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859921

RESUMEN

The first described and best known mammalian secreted chaperone, abundant in human blood, is clusterin. Recent independent studies are now exploring the potential use of clusterin as a therapeutic in a variety of disease contexts. In the past, the extensive post-translational processing of clusterin, coupled with its potent binding to essentially any misfolded protein, have meant that its expression as a fully functional recombinant protein has been very difficult. We report here the first rapid and high-yield system for the expression and purification of fully post-translationally modified and chaperone-active clusterin. Only 5-6 days is required from initial transfection to harvest of the protein-free culture medium containing the recombinant product. Purification to near-homogeneity can then be accomplished in a single affinity purification step and the yield for wild type human clusterin is of the order of 30-40 mg per litre of culture. We have also shown that this system can be used to quickly express and purify custom-designed clusterin mutants. These advances dramatically increase the feasibility of detailed structure-function analysis of the clusterin molecule and will facilitate identification of those specific regions responsible for the interactions of clusterin with receptors and other molecules.


Asunto(s)
Clusterina/genética , Clusterina/aislamiento & purificación , Ingeniería de Proteínas/métodos , Cromatografía de Afinidad/métodos , Procesamiento Proteico-Postraduccional/fisiología , Proteómica/métodos , Proteínas Recombinantes/metabolismo , Transfección/métodos
7.
Sci Rep ; 10(1): 11802, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678144

RESUMEN

Plasmodium invasion of red blood cells involves malaria proteins, such as reticulocyte-binding protein homolog 5 (RH5), RH5 interacting protein (RIPR), cysteine-rich protective antigen (CyRPA), apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2), all of which are blood-stage malaria vaccine candidates. So far, vaccines containing AMA1 alone have been unsuccessful in clinical trials. However, immunization with AMA1 bound with RON2L (AMA1-RON2L) induces better protection against P. falciparum malaria in Aotus monkeys. We therefore sought to determine whether combinations of RH5, RIPR, CyRPA and AMA1-RON2L antibodies improve their biological activities and sought to develop a robust method for determination of synergy or additivity in antibody combinations. Rabbit antibodies against AMA1-RON2L, RH5, RIPR or CyRPA were tested either alone or in combinations in P. falciparum growth inhibition assay to determine Bliss' and Loewe's additivities. The AMA1-RON2L/RH5 combination consistently demonstrated an additive effect while the CyRPA/RIPR combination showed a modest synergistic effect with Hewlett's [Formula: see text] Additionally, we provide a publicly-available, online tool to aid researchers in analyzing and planning their own synergy experiments. This study supports future blood-stage vaccine development by providing a solid methodology to evaluate additive and/or synergistic (or antagonistic) effect of vaccine-induced antibodies.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Eritrocitos/parasitología , Inmunización , Inmunoglobulina G/inmunología , Estadios del Ciclo de Vida/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/crecimiento & desarrollo
8.
NPJ Vaccines ; 3: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131879

RESUMEN

Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called "RH5.1" was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at -80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and "difficult-to-express" recombinant protein-based vaccines.

9.
mBio ; 8(1)2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28119471

RESUMEN

Streptococcus pyogenes (group A streptococcus [GAS]) is responsible for over 500,000 deaths worldwide each year. The highly virulent M1T1 GAS clone is one of the most frequently isolated serotypes from streptococcal pharyngitis and invasive disease. The oral epithelial tract is a niche highly abundant in glycosylated structures, particularly those of the ABO(H) blood group antigen family. Using a high-throughput approach, we determined that a strain representative of the globally disseminated M1T1 GAS clone 5448 interacts with numerous, structurally diverse glycans. Preeminent among GAS virulence factors is the surface-expressed M protein. M1 protein showed high affinity for several terminal galactose blood group antigen structures. Deletion mutagenesis shows that M1 protein mediates glycan binding via its B repeat domains. Association of M1T1 GAS with oral epithelial cells varied significantly as a result of phenotypic differences in blood group antigen expression, with significantly higher adherence to those cells expressing H antigen structures compared to cells expressing A, B, or AB antigen structures. These data suggest a novel mechanism for GAS attachment to host cells and propose a link between host blood group antigen expression and M1T1 GAS colonization. IMPORTANCE: There has been a resurgence in group A streptococcal (GAS) invasive disease, which has been paralleled by the emergence of the highly virulent M1T1 GAS clone. Intensive research has focused on mechanisms that contribute to the invasive nature of this serotype, while the mechanisms that contribute to host susceptibility to disease and bacterial colonization and persistence are still poorly understood. The M1T1 GAS clone is frequently isolated from the throat, an environment highly abundant in blood group antigen structures. This work examined the interaction of the M1 protein, the preeminent GAS surface protein, against a wide range of host-expressed glycan structures. Our data suggest that susceptibility to infection by GAS in the oral tract may correlate with phenotypic differences in host blood group antigen expression. Thus, variations in host blood group antigen expression may serve as a selective pressure contributing to the dissemination and overrepresentation of M1T1 GAS.


Asunto(s)
Antígenos Bacterianos/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas Portadoras/metabolismo , Células Epiteliales/microbiología , Polisacáridos/metabolismo , Streptococcus pyogenes/fisiología , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Análisis Mutacional de ADN , Células Epiteliales/química , Unión Proteica
10.
PLoS One ; 9(1): e86989, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24466307

RESUMEN

Clusterin was the first described secreted mammalian chaperone and is implicated as being a key player in both intra- and extracellular proteostasis. Its unique combination of structural features and biological chaperone activity has, however, previously made it very challenging to express and purify the protein in a correctly processed and chaperone-active form. While there are multiple reports in the literature describing the use of recombinant clusterin, all of these reports suffer from one or more of the following shortcomings: details of the methods used to produce the protein are poorly described, the product is incompletely (if at all) characterised, and purity (if shown) is in many cases inadequate. The current report provides the first well validated method to economically produce pure chaperone-active recombinant clusterin. The method was developed after trialling expression in cultured bacterial, yeast, insect and mammalian cells, and involves the expression of recombinant clusterin from stably transfected HEK293 cells in protein-free medium. The product is expressed at between 7.5 and 10 µg/ml of culture, and is readily purified by a combination of immunoaffinity, cation exchange and size exclusion chromatography. The purified product was shown to be glycosylated, correctly proteolytically cleaved into α- and ß-subunits, and have chaperone activity similar to that of human plasma clusterin. This new method creates the opportunity to use mutagenesis and metabolic labelling approaches in future studies to delineate functionally important sites within clusterin, and also provides a theoretically unlimited supply of recombinant clusterin which may in the future find applications in the development of therapeutics.


Asunto(s)
Clusterina/aislamiento & purificación , Clusterina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo , Cromatografía en Gel , Clusterina/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Glicosilación , Humanos , Mutación/genética , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
11.
J Mol Biol ; 421(4-5): 499-516, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22248589

RESUMEN

Extracellular protein misfolding and aggregation underlie many of the most serious amyloidoses including Alzheimer's disease, spongiform encephalopathies and type II diabetes. Despite this, protein homeostasis (proteostasis) research has largely focussed on characterising systems that function to monitor protein conformation and concentration within cells. We are now starting to identify elements of corresponding systems, including an expanding family of secreted chaperones, which exist in the extracellular space. Like their intracellular counterparts, extracellular chaperones are likely to play a central role in systems that maintain proteostasis; however, the precise details of how they participate are only just emerging. It is proposed that extracellular chaperones patrol biological fluids for misfolded proteins and facilitate their clearance via endocytic receptors. Importantly, many amyloidoses are associated with dysfunction in rates of protein clearance. This is consistent with a model in which disruption to, or overwhelming of, the systems responsible for extracellular proteostasis results in the accumulation of pathological protein aggregates and disease. Further characterisation of mechanisms that maintain extracellular proteostasis will shed light on why many serious diseases occur and provide us with much needed strategies to combat them.


Asunto(s)
Amiloide/metabolismo , Amiloidosis/fisiopatología , Matriz Extracelular/enzimología , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Endocitosis , Humanos , Enfermedades Neurodegenerativas/fisiopatología , Desnaturalización Proteica , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA