Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 23(1): 344-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26698084

RESUMEN

Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques. Its end-station re-uses part of the apparatus of the earlier ID22 beamline, while improving and enlarging the spectroscopic capabilities: for example, the experimental arrangement offers improved lateral spatial resolution (∼50 nm), a larger and more flexible capability for in situ experiments, and monochromatic nanobeams tunable over a wider energy range which now includes the hard X-ray regime (5-70 keV). This paper describes the characteristics of this new facility, short-term technical developments and the first scientific results.

2.
Rev Sci Instrum ; 80(3): 033906, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19334933

RESUMEN

We present a new diamond anvil cell (DAC), hereafter called the fluoX DAC, dedicated for x-ray fluorescence (XRF) analysis of trace elements in fluids under high pressure and high temperature to 10 GPa and 1273 K at least. This new setup has allowed measurement of Rb, Sr, Y, Zr, with concentrations of 50 ppm to 5.6 GPa and 1273 K. The characteristics of the fluoX DAC consist in an optimized shielding and collection geometry in order to reduce the background level in XRF spectrum. Consequently, minimum detection limits of 0.3 ppm were calculated for the abovementioned elements in this new setup. This new DAC setup coupled to the hard x-rays focusing beamline ID22 (ESRF, France) offers the possibility to analyze in situ at high pressure and high temperature, ppm level concentrations of heavy elements, rare earth elements, and first transition metals, which are of prime importance in geochemical processes. The fluoX DAC is also suitable to x-ray diffraction over the same high pressure-temperature range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA