Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290314

RESUMEN

Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The result of the GAA deficiency is a ubiquitous lysosomal and non-lysosomal accumulation of glycogen. The most affected tissues are heart, skeletal muscle, liver, and the nervous system. Replacement therapy with the currently approved enzyme relies on M6P-mediated endocytosis. However, therapeutic outcomes still leave room for improvement, especially with regard to skeletal muscles. We tested the uptake, activity, and effect on glucose metabolism of a non-phosphorylated recombinant human GAA produced in moss (moss-GAA). Three variants of moss-GAA differing in glycosylation pattern have been analyzed: two with terminal mannose residues in a paucimannosidic (Man3) or high-mannose (Man 5) configuration and one with terminal N-acetylglucosamine residues (GnGn). Compared to alglucosidase alfa the moss-GAA GnGn variant showed increased uptake in differentiated myotubes. Moreover, incubation of immortalized muscle cells of Gaa-/- mice with moss-GAA GnGn led to similarly efficient clearance of accumulated glycogen as with alglucosidase alfa. These initial data suggest that M6P-residues might not always be necessary for the cellular uptake in enzyme replacement therapy (ERT) and indicate the potential of moss-GAA GnGn as novel alternative drug for targeting skeletal muscle in Pompe patients.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Proteínas Recombinantes/farmacología , Animales , Biomarcadores , Briófitas/genética , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Terapia de Reemplazo Enzimático/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo II/etiología , Humanos , Ratones , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Proteínas Recombinantes/uso terapéutico , alfa-Glucosidasas/farmacología , alfa-Glucosidasas/uso terapéutico
2.
J Inherit Metab Dis ; 39(2): 293-303, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26310963

RESUMEN

Enzyme replacement therapy (ERT) is an effective treatment for several lysosomal storage disorders (LSDs). Intravenously infused enzymes are taken up by tissues through either the mannose 6-phosphate receptor (M6PR) or the mannose receptor (MR). It is generally believed that M6PR-mediated endocytosis is a key mechanism for ERT in treating LSDs that affect the non-macrophage cells of visceral organs. However, the therapeutic efficacy of MR-mediated delivery of mannose-terminated enzymes in these diseases has not been fully evaluated. We tested the effectiveness of a non-phosphorylated α-galactosidase A produced from moss (referred to as moss-aGal) in vitro and in a mouse model of Fabry disease. Endocytosis of moss-aGal was MR-dependent. Compared to agalsidase alfa, a phosphorylated form of α-galactosidase A, moss-aGal was more preferentially targeted to the kidney. Cellular localization of moss-aGal and agalsidase alfa in the heart and kidney was essentially identical. A single injection of moss-aGal led to clearance of accumulated substrate in the heart and kidney to an extent comparable to that achieved by agalsidase alfa. This study suggested that mannose-terminated enzymes may be sufficiently effective for some LSDs in which non-macrophage cells are affected, and that M6P residues may not always be a prerequisite for ERT as previously considered.


Asunto(s)
Enfermedad de Fabry/enzimología , Enfermedad de Fabry/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Manosafosfatos/metabolismo , Receptores de Superficie Celular/metabolismo , alfa-Galactosidasa/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Femenino , Humanos , Isoenzimas/metabolismo , Riñón/metabolismo , Enfermedades por Almacenamiento Lisosomal/enzimología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Masculino , Receptor de Manosa , Ratones , Ratones Endogámicos C57BL , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes
3.
Front Immunol ; 15: 1383123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799460

RESUMEN

Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring the balance of an overactive complement system while preserving its normal physiological functions. Until now, the systemic treatment of complement-associated disorders with FH has been deemed unfeasible, primarily due to high production costs, risks related to FH purified from donors' blood, and the challenging expression of recombinant FH in different host systems. We recently demonstrated that a moss-based expression system can produce high yields of properly folded, fully functional, recombinant FH. However, the half-life of the initial variant (CPV-101) was relatively short. Here we show that the same polypeptide with modified glycosylation (CPV-104) achieves a pharmacokinetic profile comparable to that of native FH derived from human serum. The treatment of FH-deficient mice with CPV-104 significantly improved important efficacy parameters such as the normalization of serum C3 levels and the rapid degradation of C3 deposits in the kidney compared to treatment with CPV-101. Furthermore, CPV-104 showed comparable functionality to serum-derived FH in vitro, as well as similar performance in ex vivo assays involving samples from patients with atypical hemolytic uremic syndrome, C3 glomerulopathy and paroxysomal nocturnal hematuria. CPV-104 - the human FH analog expressed in moss - will therefore allow the treatment of complement-associated human diseases by rebalancing instead of inhibiting the complement cascade.


Asunto(s)
Factor H de Complemento , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Animales , Ratones , Semivida , Polisacáridos/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Glicosilación , Proteínas Recombinantes , Ratones Noqueados , Ratones Endogámicos C57BL , Masculino
4.
JIMD Rep ; 64(6): 460-467, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37927484

RESUMEN

Fabry disease (FD, OMIM 301500) is a rare X-linked inherited lysosomal storage disorder associated with reduced activities of α-galactosidase A (aGal, EC 3.2.1.22). The current standard of care for FD is based on enzyme replacement therapy (ERT), in which a recombinantly produced version of αGal is intravenously (iv) applied to Fabry patients in biweekly intervals. Though the iv application is clinically efficacious, periodical infusions are inconvenient, time- and resource-consuming and they negatively impact the patients' quality of life. Subcutaneous (sc) injection, in contrast, is an established route of administration for treatment of chronic conditions. It opens the beneficial option of self-administration, thereby improving patients' quality of life and at the same time reducing treatment costs. We have previously shown that Moss-α-Galactosidase (moss-aGal), recombinantly produced in the moss Physcomitrium patens, is efficient in degrading accumulated Gb3 in target organs of murine model of FD and in the phase I clinical study, we obtained first efficacy evidence in human patients following single iv infusion. Here, we tested the efficacy of subcutaneous administration of moss-aGal and compared it with the results observed following iv infusion in Fabry mice. The obtained findings demonstrate that subcutaneously applied moss-aGal is correctly transported to target organs and efficacious in degrading Gb3 deposits there and thus suggest the possibility of using this route of administration for therapy of Fabry disease.

5.
JIMD Rep ; 59(1): 81-89, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977033

RESUMEN

Pompe disease, an autosomal recessive lysosomal storage disorder, is caused by deficiency of lysosomal acid alpha-glucosidase (GAA). On cellular level, there is lysosomal-bound and free accumulation of glycogen and subsequent damage of organelles and organs. The most severe affected tissues are skeletal muscles and heart. The only available treatment to date is an enzyme replacement therapy (ERT) with alglucosidase alfa, a recombinant human GAA (rhGAA) modified with mannose-6-phosphate (M6P), which is internalized via M6P-mediated endocytosis. There is an unmet need to improve this type of therapy, especially in regard to skeletal muscle. Using different tissue culture models, we recently provided evidence that a moss-derived nonphosphorylated rhGAA (moss-GAA), carrying a glycosylation with terminal N-acetylglucosamine residues (GnGn), might have the potential to improve targeting of skeletal muscle. Now, we present a pilot treatment of Gaa -/- mice with moss-GAA. We investigated general effects as well as the uptake into different organs following short-term treatment. Our results do confirm that moss-GAA reaches the target disease organs and thus might have the potential to be an alternative or complementary ERT to the existing one.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA