Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; 36(3): e4846, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259628

RESUMEN

Magnetic resonance imaging (MRI) technology has profoundly transformed current healthcare systems globally, owing to advances in hardware and software research innovations. Despite these advances, MRI remains largely inaccessible to clinicians, patients, and researchers in low-resource areas, such as Africa. The rapidly growing burden of noncommunicable diseases in Africa underscores the importance of improving access to MRI equipment as well as training and research opportunities on the continent. The Consortium for Advancement of MRI Education and Research in Africa (CAMERA) is a network of African biomedical imaging experts and global partners, implementing novel strategies to advance MRI access and research in Africa. Upon its inception in 2019, CAMERA sets out to identify challenges to MRI usage and provide a framework for addressing MRI needs in the region. To this end, CAMERA conducted a needs assessment survey (NAS) and a series of symposia at international MRI society meetings over a 2-year period. The 68-question NAS was distributed to MRI users in Africa and was completed by 157 clinicians and scientists from across Sub-Saharan Africa (SSA). On average, the number of MRI scanners per million people remained at less than one, of which 39% were obsolete low-field systems but still in use to meet daily clinical needs. The feasibility of coupling stable energy supplies from various sources has contributed to the growing number of higher-field (1.5 T) MRI scanners in the region. However, these systems are underutilized, with only 8% of facilities reporting clinical scans of 15 or more patients per day, per scanner. The most frequently reported MRI scans were neurological and musculoskeletal. The CAMERA NAS combined with the World Health Organization and International Atomic Energy Agency data provides the most up-to-date data on MRI density in Africa and offers a unique insight into Africa's MRI needs. Reported gaps in training, maintenance, and research capacity indicate ongoing challenges in providing sustainable high-value MRI access in SSA. Findings from the NAS and focused discussions at international MRI society meetings provided the basis for the framework presented here for advancing MRI capacity in SSA. While these findings pertain to SSA, the framework provides a model for advancing imaging needs in other low-resource settings.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , África del Sur del Sahara , Encuestas y Cuestionarios
2.
J Med Syst ; 41(10): 168, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905174

RESUMEN

Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.


Asunto(s)
Contracción Miocárdica , Algoritmos , Proteínas Portadoras , Citocinas , Corazón , Humanos , Imagen por Resonancia Magnética
3.
J Med Syst ; 40(4): 106, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26892456

RESUMEN

Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it possible to distinguish cancerous cells from normal cells. A typical example of liver distinguished from gray matter, white matter and kidney is demonstrated. Bessel functions and properties are specifically needed to show the direct effect of the instantaneous velocity on the NMR signal originating from normal and abnormal tissues.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Neoplasias Encefálicas/patología , Sustancia Gris/patología , Humanos , Riñón/patología , Neoplasias/diagnóstico , Neoplasias/patología , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA