Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 21(Suppl 9): 585, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32900358

RESUMEN

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) is a powerful profiling technique at the single-cell resolution. Appropriate analysis of scRNA-seq data can characterize molecular heterogeneity and shed light into the underlying cellular process to better understand development and disease mechanisms. The unique analytic challenge is to appropriately model highly over-dispersed scRNA-seq count data with prevalent dropouts (zero counts), making zero-inflated dimensionality reduction techniques popular for scRNA-seq data analyses. Employing zero-inflated distributions, however, may place extra emphasis on zero counts, leading to potential bias when identifying the latent structure of the data. RESULTS: In this paper, we propose a fully generative hierarchical gamma-negative binomial (hGNB) model of scRNA-seq data, obviating the need for explicitly modeling zero inflation. At the same time, hGNB can naturally account for covariate effects at both the gene and cell levels to identify complex latent representations of scRNA-seq data, without the need for commonly adopted pre-processing steps such as normalization. Efficient Bayesian model inference is derived by exploiting conditional conjugacy via novel data augmentation techniques. CONCLUSION: Experimental results on both simulated data and several real-world scRNA-seq datasets suggest that hGNB is a powerful tool for cell cluster discovery as well as cell lineage inference.


Asunto(s)
ARN , Análisis de la Célula Individual , Teorema de Bayes , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
2.
Bioinformatics ; 34(19): 3349-3356, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688254

RESUMEN

Motivation: Rapid adoption of high-throughput sequencing technologies has enabled better understanding of genome-wide molecular profile changes associated with phenotypic differences in biomedical studies. Often, these changes are due to multiple interacting factors. Existing methods are mostly considering differential expression across two conditions studying one main factor without considering other confounding factors. In addition, they are often coupled with essential sophisticated ad-hoc pre-processing steps such as normalization, restricting their adaptability to general experimental setups. Complex multi-factor experimental design to accurately decipher genotype-phenotype relationships signifies the need for developing effective statistical tools for genome-scale sequencing data profiled under multi-factor conditions. Results: We have developed a novel Bayesian negative binomial regression (BNB-R) method for the analysis of RNA sequencing (RNA-seq) count data. In particular, the natural model parameterization removes the needs for the normalization step, while the method is capable of tackling complex experimental design involving multi-variate dependence structures. Efficient Bayesian inference of model parameters is obtained by exploiting conditional conjugacy via novel data augmentation techniques. Comprehensive studies on both synthetic and real-world RNA-seq data demonstrate the superior performance of BNB-R in terms of the areas under both the receiver operating characteristic and precision-recall curves. Availability and implementation: BNB-R is implemented in R language and is available at https://github.com/siamakz/BNBR. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Teorema de Bayes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proyectos de Investigación , Análisis de Secuencia de ARN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA