Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nano Lett ; 24(13): 3986-3993, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501960

RESUMEN

Atomically thin cuprates exhibiting a superconducting phase transition temperature similar to that of the bulk have recently been realized, although the device fabrication remains a challenge and limits the potential for many novel studies and applications. Here, we use an optical pump-probe approach to noninvasively study the unconventional superconductivity in atomically thin Bi2Sr2Ca0.92Y0.08Cu2O8+δ (Y-Bi2212). Apart from finding an optical response due to the superconducting phase transition that is similar to that of bulk Y-Bi2212, we observe that the sign and amplitude of the pump-probe signal in atomically thin flakes vary significantly in different dielectric environments depending on the nature of the optical excitation. By exploiting the spatial resolution of the optical probe, we uncover the exceptional sensitivity of monolayer Y-Bi2212 to the environment. Our results provide the first optical evidence for the intralayer nature of the superconducting condensate in Bi2212 and highlight the role of double-sided encapsulation in preserving superconductivity in atomically thin cuprates.

2.
Nano Lett ; 23(15): 7228-7235, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358360

RESUMEN

Slip avalanches are ubiquitous phenomena occurring in three-dimensional materials under shear strain, and their study contributes immensely to our understanding of plastic deformation, fragmentation, and earthquakes. So far, little is known about the role of shear strain in two-dimensional (2D) materials. Here we show some evidence of 2D slip avalanches in exfoliated rhombohedral MoS2, triggered by shear strain near the threshold level. Utilizing interfacial polarization in 3R-MoS2, we directly probe the stacking order in multilayer flakes and discover a wide variety of polarization domains with sizes following a power-law distribution. These findings suggest that slip avalanches can occur during the exfoliation of 2D materials, and the stacking orders can be changed via shear strain. Our observation has far-reaching implications for the development of new materials and technologies, where precise control over the atomic structure of these materials is essential for optimizing their properties as well as for our understanding of fundamental physical phenomena.

3.
Opt Lett ; 43(16): 4061-4064, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30106952

RESUMEN

We demonstrate a novel differential phase-shift-keying (DPSK) demodulator based on coherent perfect absorption (CPA). Our DPSK demodulator chip device, which incorporates a silicon ring resonator, two bus waveguide inputs, and monolithically integrated detectors, operates passively at a bit rate of 10 Gbps at telecommunication wavelengths, and fits within a mm-scale footprint. Critical coupling is used to achieve efficient CPA by tuning the gap between the ring and bus waveguides. The device has a vertical eye opening of 12.47 mV and a quality factor exceeding 3×104. The fundamental principle behind this photonic circuit can be extended to other formats of integrated demodulators.

4.
Opt Lett ; 42(13): 2651-2654, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957307

RESUMEN

We report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ∼1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-color photoexcited current with increasing tip-surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.

5.
Nano Lett ; 16(2): 953-9, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26760447

RESUMEN

Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.

6.
Opt Lett ; 41(11): 2636-9, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27244433

RESUMEN

Lasers based on monolayer (ML) transition-metal dichalcogenide semiconductor crystals have the potential for low threshold operation and a small device footprint; however, nanophotonic engineering is required to maximize the interaction between the optical fields and the three-atom-thick gain medium. Here, we develop a theoretical model to design a direct bandgap optically pumped nanophotonic integrated laser. Our device utilizes a gap-surface-plasmon optical mode to achieve subwavelength optical confinement and consists of a high-index GaP nanowire atop an ML MoS2 film on an Ag substrate. The optical field and material medium are analyzed using a three dimensional finite-difference time-domain method and a first-principles calculation based on the density functional theory, respectively. The nanolaser is designed to have a threshold of ∼0.6 µW under quasi-continuous wave operation on an excitonic transition at room temperature.

7.
Opt Lett ; 41(11): 2537-40, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27244408

RESUMEN

We present the first experimental demonstration of coherent perfect absorption (CPA) in an integrated device using a silicon racetrack resonator at telecommunication wavelengths. Absorption in the racetrack is achieved by Si+-ion-implantation, allowing for phase controllable amplitude modulation at the resonant wavelength. The device is measured to have an extinction of 24.5 dB and a quality-factor exceeding 3000. Our results will enable integrated CPA devices for data modulation and detection.

8.
Opt Express ; 22(16): 19653-61, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25321048

RESUMEN

Helium-ion-induced radiation damage in a LiNbO3-thin-film (10 µm-thick) modulator is experimentally investigated. The results demonstrate a degradation of the device performance in the presence of He(+) irradiation at doses of ≥ 10(16) cm(-2). The experiments also show that the presence of the He(+) stopping region, which determines the degree of overlap between the ion-damaged region and the guided optical mode, plays a major role in determining the degree of degradation in modulation performance. Our measurements showed that the higher overlap can lead to an additional ~5.5 dB propagation loss. The irradiation-induced change of crystal-film anisotropy(n(o)-n(e))of ~36% was observed for the highest dose used in the experiments. The relevant device extinction ratio, V(π)L, and device insertion loss, as well the damage mechanisms of each of these parameters are also reported and discussed.

9.
Opt Express ; 22(18): 22018-30, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25321576

RESUMEN

We theoretically investigate the fluorescence enhancement of a molecule placed in a variable (4 - 20 nm) gap of a plasmonic dimer, with different dye molecules as well as different nanoparticle geometries, using a fully vectorial three-dimensional finite-difference time-domain (3D FDTD) method. This work extends previous studies on molecular fluorescence in the vicinity of metal interfaces and single nanoparticles and shows how the radiative emission of a molecule can be further enhanced by engineering the geometry of a plasmonic structure. Through the use of rigorous 3D FDTD calculations, in conjunction with analytic guidance based on temporal coupled-mode (TCM) theory, we develop a design procedure for antennae assemblies that is useful both for general understanding of molecule-metal structure interaction and experimental efforts in plasmon-enhanced molecular spectroscopy.

10.
Opt Express ; 22(15): 18543-55, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25089474

RESUMEN

Mode-division-multiplexing (MDM) and wavelength-division-multiplexing (WDM) are employed simultaneously in a multimode silicon waveguide to realize on-chip MDM and MDM-WDM transmission. Asymmetric Y-junction MDM multiplexers and demultiplexers are utilized for low coherently suppressed demultiplexed crosstalk at the receiver. We demonstrate aggregate bandwidths of 20 Gb/s and 60 Gb/s for MDM and MDM-WDM on-chip links, respectively, with measured 10(-9) BER power penalties between 0.1 dB and 0.7 dB per channel.

11.
Nat Commun ; 15(1): 1389, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360848

RESUMEN

Understanding the nature of sliding ferroelectricity is of fundamental importance for the discovery and application of two-dimensional ferroelectric materials. In this work, we investigate the phenomenon of switchable polarization in a bilayer MoS2 with natural rhombohedral stacking, where the spontaneous polarization is coupled with excitonic effects through asymmetric interlayer coupling. Using optical spectroscopy and imaging techniques, we observe how a released domain wall switches the polarization of a large single domain. Our results highlight the importance of domain walls in the polarization switching of non-twisted rhombohedral transition metal dichalcogenides and open new opportunities for the non-volatile control of their optical response.

12.
Opt Express ; 21(25): 31176-8, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24514691

RESUMEN

Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.


Asunto(s)
Dinámicas no Lineales , Dispositivos Ópticos , Diseño de Equipo , Evaluación de la Tecnología Biomédica
13.
Opt Lett ; 38(11): 1854-6, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23722767

RESUMEN

Silicon waveguide asymmetric Y junction mode multiplexers and demultiplexers are demonstrated for applications in on-chip mode-division multiplexing (MDM). We measure demultiplexed crosstalk as low as -30 dB, <-9 dB over the C band, and insertion loss <1.5 dB for multimode links up to 1.2 mm in length. The frequency response of these devices is shown to depend upon Y junction angle and multimode interconnect length. Interference effects are shown to be advantageous for low-crosstalk MDM, even while using compact Y junctions designed to be outside the mode-sorting regime.

14.
Phys Rev Lett ; 111(10): 106801, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25166690

RESUMEN

We report on the evolution of the thickness-dependent electronic band structure of the two-dimensional layered-dichalcogenide molybdenum disulfide (MoS2). Micrometer-scale angle-resolved photoemission spectroscopy of mechanically exfoliated and chemical-vapor-deposition-grown crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, for the case of MoS2 having more than one layer, to the case of single-layer MoS2, as predicted by density functional theory. This evolution of the electronic structure from bulk to few-layer to monolayer MoS2 had earlier been predicted to arise from quantum confinement. Furthermore, one of the consequences of this progression in the electronic structure is the dramatic increase in the hole effective mass, in going from bulk to monolayer MoS2 at its Brillouin zone center, which is known as the cause for the decreased carrier mobility of the monolayer form compared to that of bulk MoS2.

15.
Opt Express ; 20(8): 9227-42, 2012 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-22513635

RESUMEN

We experimentally demonstrate quasi-phase-matched (QPM) four-wave-mixing (FWM) in silicon (Si) nanowire waveguides with sinusoidally modulated width. We perform discrete wavelength conversion over 250 nm, and observe 12 dB conversion efficiency (CE) enhancement for targeted wavelengths more than 100 nm away from the edge of the 3-dB conversion bandwidth. The QPM process in Si nanowires is rigorously modeled, with results explaining experimental observations. The model is further used to investigate the dependence of the CE on key device parameters, and to introduce devices that facilitate wavelength conversion between the C-band and mid-IR. Devices based on a superposition of sinusoidal gratings are investigated theoretically, and are shown to provide CE enhancement over the entire C-band. Width-modulation is further shown to be compatible with zero-dispersion-wavelength pumping for broadband wavelength conversion. The results indicate that QPM via width-modulation is an effective technique for extending the spectral domain of efficient FWM in Si waveguides.

16.
Sci Adv ; 8(50): eade3759, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525495

RESUMEN

Rhombohedrally stacked MoS2 has been shown to exhibit spontaneous polarization down to the bilayer limit and can sustain a strong depolarization field when sandwiched between graphene. Such a field gives rise to a spontaneous photovoltaic effect without needing any p-n junction. In this work, we show that the photovoltaic effect has an external quantum efficiency of 10% for devices with only two atomic layers of MoS2 at low temperatures, and identify a picosecond-fast photocurrent response, which translates to an intrinsic device bandwidth at ∼100-GHz level. To this end, we have developed a nondegenerate pump-probe photocurrent spectroscopy technique to deconvolute the thermal and charge-transfer processes, thus successfully revealing the multicomponent nature of the photocurrent dynamics. The fast component approaches the limit of the charge-transfer speed at the graphene-MoS2 interface. The remarkable efficiency and ultrafast photoresponse in the graphene-3R-MoS2 devices support the use of ferroelectric van der Waals materials for future high-performance optoelectronic applications.

17.
Commun Chem ; 5(1): 58, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-36698010

RESUMEN

Understanding the chemical and physical properties of particles is an important scientific, engineering, and medical issue that is crucial to air quality, human health, and environmental chemistry. Of special interest are aerosol particles floating in the air for both indoor virus transmission and outdoor atmospheric chemistry. The growth of bio- and organic-aerosol particles in the air is intimately correlated with chemical structures and their reactions in the gas phase at aerosol particle surfaces and in-particle phases. However, direct measurements of chemical structures at aerosol particle surfaces in the air are lacking. Here we demonstrate in situ surface-specific vibrational sum frequency scattering (VSFS) to directly identify chemical structures of molecules at aerosol particle surfaces. Furthermore, our setup allows us to simultaneously probe hyper-Raman scattering (HRS) spectra in the particle phase. We examined polarized VSFS spectra of propionic acid at aerosol particle surfaces and in particle bulk. More importantly, the surface adsorption free energy of propionic acid onto aerosol particles was found to be less negative than that at the air/water interface. These results challenge the long-standing hypothesis that molecular behaviors at the air/water interface are the same as those at aerosol particle surfaces. Our approach opens a new avenue in revealing surface compositions and chemical aging in the formation of secondary organic aerosols in the atmosphere as well as chemical analysis of indoor and outdoor viral aerosol particles.

18.
Opt Express ; 19(8): 7778-89, 2011 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-21503088

RESUMEN

We report an experimental study of picosecond pulse propagation through a 4-mm-long Si nanophotonic wire with normal dispersion, at excitation wavelengths from 1775 to 2250 nm. This wavelength range crosses the mid-infrared two-photon absorption edge of Si at ~2200 nm. Significant reduction in nonlinear loss due to two-photon absorption is measured as excitation wavelengths approach 2200 nm. At high input power, self-phase modulation is clearly demonstrated by the development of power-dependant spectral fringes. Asymmetry and blue-shift in the appearance of the spectral fringes at 1775 nm versus 2200 nm is further shown to originate from a strong reduction in the intra-pulse density of two-photon absorption-generated free carriers and the associated free-carrier dispersion. Analysis of experimental data and comparison with numerical simulations illustrates that the two-photon absorption coefficient ß(TPA) obtained here from nanophotonic wire measurements is in reasonable agreement with prior measurements of bulk silicon crystals, and that bulk Si values of the nonlinear refractive index n(2) can be confidently incorporated in the modeling of pulse propagation in deeply-scaled waveguide structures.

19.
Opt Lett ; 36(8): 1416-8, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21499375

RESUMEN

Computational studies are used to show that the crystalline structure of Si causes the waveguide Kerr effective nonlinearity, γ, to vary by 10% for in-plane variation of the orientation of a silicon nanowire waveguide (SiNWG) fabricated on a standard silicon-on-insulator wafer. Our analysis shows that this angular dependence of γ can be employed to form a nonlinear Kerr grating in dimensionally uniform SiNWGs based on either ring resonators or cascaded waveguide bends. The magnitude of the nonlinear index variation in these gratings is found to be sufficient for phase matching in four-wave mixing and other optical parametric processes.

20.
Opt Express ; 17(9): 7431-9, 2009 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-19399121

RESUMEN

We have developed a general analytic description of polarized light pulses and explored the properties of circularly polarized single-cycle pulses. The temporal evolution of the electric-field vector of such spectrally broad pulses, which may be described in terms of a Hilbert transform relationship, differs significantly from the well-known behavior of quasi-monochromatic radiation. Single-cycle circularly polarized pulses are produced and characterized experimentally in the terahertz spectral region.


Asunto(s)
Modelos Teóricos , Refractometría/métodos , Simulación por Computador , Luz , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA