Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 286(1916): 20191933, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31795864

RESUMEN

Inclusive fitness theory predicts that parental care will vary with relatedness between potentially caring parents and offspring, potentially shaping mating system evolution. Systems with extra-pair paternity (EPP), and hence variable parent-brood relatedness, provide valuable opportunities to test this prediction. However, existing theoretical and empirical studies assume that a focal male is either an offspring's father with no inbreeding, or is completely unrelated. We highlight that this simple dichotomy does not hold given reproductive interactions among relatives, complicating the effect of EPP on parent-brood relatedness yet providing new opportunities to test inclusive fitness theory. Accordingly, we tested hierarchical hypotheses relating parental feeding rate to parent-brood relatedness, parent kinship and inbreeding, using song sparrows (Melospiza melodia) experiencing natural variation in relatedness. As predicted, male and female feeding rates increased with relatedness to a dependent brood, even controlling for brood size. Male feeding rate tended to decrease as paternity loss increased, and increased with increasing kinship and hence inbreeding between socially paired mates. We thereby demonstrate that variation in a key component of parental care concurs with subtle predictions from inclusive fitness theory. We additionally highlight that such effects can depend on the underlying social mating system, potentially generating status-specific costs of extra-pair reproduction.


Asunto(s)
Endogamia , Passeriformes/fisiología , Conducta Sexual Animal , Animales , Femenino , Masculino
2.
Sci Total Environ ; 858(Pt 3): 160122, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370788

RESUMEN

Bioretention systems are green infrastructures increasingly used to manage urban stormwater runoff. Plants are an essential component of bioretention, improving water quality and reducing runoff volume and peak flows. However, there is little evidence on how this contribution varies between species, especially in temperate climates with seasonal variations and plant dormancy. The aim of our study was to compare the performance of four plant species for bioretention effectiveness during the growing and dormant periods in a mesocosm study. The species selected (Cornus sericea, Juncus effusus, Iris versicolor, Sesleria autumnalis) are commonly used in bioretention and cover a wide range of biological forms and functional traits.All bioretention mesocosms were effective in reducing water volume, flow and pollutant levels in both of the studied periods. Plants decreased runoff volume and increased contaminant retention by reducing water flow (up to 2.7 times compared to unplanted systems) and increasing water loss through evapotranspiration during the growing period (up to 2.5 times). Plants improved removal of macronutrients, with an average mass removal of 55 % for TN, 81 % for TP and 61 % for K compared to -6 % (release), 61 % and 22 % respectively for the unplanted systems. Except for Sesleria, mass removal of trace elements in planted mesocosms was generally higher than in unplanted ones (up to 8.7 %), regardless of season. Between-species differences in exfiltration rate and improved water quality followed the same order as their evapotranspiration rate and overall size, measured in terms of plant volume, leaf biomass, total leaf area and maximum average root density (Cornus > Juncus > Iris > Sesleria). By increasing evapotranspiration, plants decreased runoff volume and increased contaminant retention. Nutrient removal was partly explained by plant assimilation. Our study confirms the importance of plant species selection for improving water quality and reducing runoff volume during bioretention under a temperate climate.

3.
Environ Microbiol Rep ; 14(5): 766-774, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055635

RESUMEN

Green roofs are unique ecosystems combining two major community assembly filters, namely stress and spatial isolation. As such, they represent an interesting model ecosystem in community ecology. In this study, we characterized the microbiome structure on 19 green roofs and 5 urban parks as a benchmark comparison (i.e. non-isolated, non-stressful habitats). Green roofs were not species depauperate, showing similar α-diversity compared to surrounding parks. We also did not find an overrepresentation of bacterial phyla typically recognized as oligotrophs, which calls into question the notion of green roofs as highly stressful habitats for bacteria, and/or the conservatism of nutritional ecophysiology at the phylum level. The geographical position of a roof, or its degree of spatial isolation (assessed through its height and area) were not important predictors of microbiome diversity and structure, suggesting that dispersal limitations impose little constraints on green roof microbiome assembly. Finally, key microbial groups (e.g. archaeal nitrifiers, Actinobacteria) were much less frequent and/or abundant on green roofs, which may have important implications for nutrient cycling and urban biogeochemistry. More work will be required to phenotype the microorganisms overrepresented on green roofs and specifically measure key soil processes in these unique urban ecosystems.


Asunto(s)
Microbiota , Suelo , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA