Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 36(5): e9232, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34862674

RESUMEN

RATIONALE: New methods to measure stable isotopes of soil and tree water directly in the field enable us to increase the temporal resolution of obtained data and advance our knowledge on the dynamics of soil and plant water fluxes. Only few field applications exist. However, these are needed to further improve novel methods and hence exploit their full potential. METHODS: We tested the borehole equilibration method in the field and collected in situ and destructive samples of stable isotopes of soil, trunk and root xylem water over a 2.5-month experiment in a tropical dry forest under natural abundance conditions and following labelled irrigation. Water from destructive samples was extracted using cryogenic vacuum extraction. Isotope ratios were determined with IRIS instruments using cavity ring-down spectroscopy both in the field and in the laboratory. RESULTS: In general, timelines of both methods agreed well for both soil and xylem samples. Irrigation labelled with heavy hydrogen isotopes clearly impacted the isotope composition of soil water and one of the two studied tree species. Inter-method deviations increased in consequence of labelling, which revealed their different capabilities to cover spatial and temporal heterogeneities. CONCLUSIONS: We applied the novel borehole equilibration method in a remote field location. Our experiment reinforced the potential of this in situ method for measuring xylem water isotopes in both tree trunks and roots and confirmed the reliability of gas permeable soil probes. However, in situ xylem measurements should be further developed to reduce the uncertainty within the range of natural abundance and hence enable their full potential.


Asunto(s)
Deuterio/análisis , Tallos de la Planta/química , Suelo/química , Árboles/química , Agua/química , Xilema/química , Riego Agrícola , Transporte Biológico , Deuterio/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Estaciones del Año , Árboles/metabolismo , Agua/metabolismo , Xilema/metabolismo
2.
Front Plant Sci ; 11: 387, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32346381

RESUMEN

Ecohydrological isotope based field research is often constrained by a lack of temporally explicit soil water data, usually related to the choice of destructive sampling in the field and subsequent analysis in the laboratory. New techniques based on gas permeable membranes allow to sample soil water vapor in situ and infer soil liquid water isotopic signatures. Here, a membrane-based in situ soil water vapor sampling method was tested at a grassland site in Freiburg, Germany. It was further compared with two commonly used destructive sampling approaches for determination of soil liquid water isotopic signatures: cryogenic vacuum extraction and centrifugation. All methods were tested under semi-controlled field conditions, conducting an experiment with dry-wet cycling and two isotopically different labeling irrigation waters. We found mean absolute differences between cryogenic vacuum extraction and in situ vapor measurements of 0.3-14.2‰ (δ18O) and 0.4-152.2‰ (δ2H) for soil liquid water. The smallest differences were found under natural abundance conditions of 2H and 18O, the strongest differences were observed after irrigation with labeled waters. Labeling strongly increased the isotopic variation in soil water: Mean soil water isotopic signatures derived by cryogenic vacuum extraction were -11.6 ± 10.9‰ (δ18O) and +61.9 ± 266.3‰ (δ2H). The in situ soil water vapor method showed isotopic signatures of -12.5 ± 9.4‰ (δ18O) and +169.3 ± 261.5‰ (δ2H). Centrifugation was unsuccessful for soil samples due to low water recovery rates. It is therefore not recommended. Our study highlights that the in situ soil water vapor method captures the temporal dynamics in the isotopic signature of soil water well while the destructive approach also includes the natural lateral isotopic heterogeneity. The different advantages and limitations of the three methods regarding setup, handling and costs are discussed. The choice of method should not only consider prevailing environmental conditions but the experimental design and goal. We see a very promising tool in the in situ soil water vapor method, capturing both temporal developments and spatial variability of soil water processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA