Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 137(14): 4646-9, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25803790

RESUMEN

The hydroxyl group of enantioenriched benzyl, propargyl, allyl, and alkyl alcohols has been intramolecularly displaced by uncharged O-, N-, and S-centered nucleophiles to yield enantioenriched tetrahydrofuran, pyrrolidine, and tetrahydrothiophene derivatives with phosphinic acid catalysis. The five-membered heterocyclic products are generated in good to excellent yields, with high degree of chirality transfer, and water as the only side-product. Racemization experiments show that phosphinic acid does not promote SN1 reactivity. Density functional theory calculations corroborate a reaction pathway where the phosphinic acid operates as a bifunctional catalyst in the intramolecular substitution reaction. In this mechanism, the acidic proton of the phosphinic acid protonates the hydroxyl group, enhancing the leaving group ability. Simultaneously, the oxo group of phosphinic acid operates as a base abstracting the nucleophilic proton and thus enhancing the nucleophilicity. This reaction will open up new atom efficient techniques that enable alcohols to be used as nucleofuges in substitution reactions in the future.

2.
Chemistry ; 21(22): 8168-76, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25917111

RESUMEN

The electron-accepting ability of 6,6-dicyanopentafulvenes (DCFs) can be varied extensively through substitution on the five-membered ring. The reduction potentials for a set of 2,3,4,5-tetraphenyl-substituted DCFs, with varying substituents at the para-position of the phenyl rings, strongly correlate with their Hammett σp-parameters. By combining cyclic voltammetry with DFT calculations ((U)B3LYP/6-311+G(d)), using the conductor-like polarizable continuum model (CPCM) for implicit solvation, the absolute reduction potentials of a set of twenty DCFs were reproduced with a mean absolute deviation of 0.10 eV and a maximum deviation of 0.19 eV. Our experimentally investigated DCFs have reduction potentials within 3.67-4.41 eV, however, the computations reveal that DCFs with experimental reduction potentials as high as 5.3 eV could be achieved, higher than that of F4-TCNQ (5.02 eV). Thus, the DCF core is a template that allows variation in the reduction potentials by about 1.6 eV.

3.
Chemistry ; 20(30): 9295-303, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25043523

RESUMEN

A new qualitative model for estimating the properties of substituted cyclopentadienes and siloles in their lowest ππ* excited states is introduced and confirmed through quantum chemical calculations, and then applied to explain earlier reported experimental excitation energies. According to our model, which is based on excited-state aromaticity and antiaromaticity, siloles and cyclopentadienes are cross-hyperconjugated "aromatic chameleons" that adapt their electronic structures to conform to the various aromaticity rules in different electronic states (Hückel's rule in the π(2) electronic ground state (S0) and Baird's rule in the lowest ππ* excited singlet and triplet states (S1 and T1)). By using pen-and-paper arguments, one can explain polarity changes upon excitation of substituted cyclopentadienes and siloles, and one can tune their lowest excitation energies by combined considerations of ground- and excited-state aromaticity/antiaromaticity effects. Finally, the "aromatic chameleon" model can be extended to other monocyclic compound classes of potential use in organic electronics, thereby providing a unified view of the S0, T1, and S1 states of a range of different cyclic cross-π-conjugated and cross-hyperconjugated compound classes.

4.
Chemistry ; 19(52): 17939-50, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24272980

RESUMEN

Gold(I)-chloride-catalyzed synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α-sulfenylated aldehydes and ketones in 60-97% yield. Secondary aliphatic propargylic alcohols generated α-sulfenylated ketones in yields of 47-71%. Different gold sources and ligand effects were studied, and it was shown that gold(I) chloride gave the highest product yields. Experimental and theoretical studies demonstrated that the reaction proceeds in two separate steps. A sulfenylated allylic alcohol, generated by initial regioselective attack of the aryl thiol on the triple bond of the propargylic alcohol, was isolated, evaluated, and found to be an intermediate in the reaction. Deuterium labeling experiments showed that the protons from the propargylic alcohol and aryl thiol were transferred to the 3-position, and that the hydride from the alcohol was transferred to the 2-position of the product. Density functional theory (DFT) calculations showed that the observed regioselectivity of the aryl thiol attack towards the 2-position of propargylic alcohol was determined by a low-energy, five-membered cyclic protodeauration transition state instead of the strained, four-membered cyclic transition state found for attack at the 3-position. Experimental data and DFT calculations supported that the second step of the reaction is initiated by protonation of the double bond of the sulfenylated allylic alcohol with a proton donor coordinated to gold(I) chloride. This in turn allows for a 1,2-hydride shift, generating the final product of the reaction.

5.
ChemSusChem ; 16(23): e202300492, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37493340

RESUMEN

Kraft lignin, a by-product from the production of pulp, is currently incinerated in the recovery boiler during the chemical recovery cycle, generating valuable bioenergy and recycling inorganic chemicals to the pulping process operation. Removing lignin from the black liquor or its gasification lowers the recovery boiler load enabling increased pulp production. During the past ten years, lignin separation technologies have emerged and the interest of the research community to valorize this underutilized resource has been invigorated. The aim of this Review is to give (1) a dedicated overview of the kraft process with a focus on the lignin, (2) an overview of applications that are being developed, and (3) a techno-economic and life cycle asseeements of value chains from black liquor to different products. Overall, it is anticipated that this effort will inspire further work for developing and using kraft lignin as a commodity raw material for new applications undeniably promoting pivotal global sustainability concerns.

6.
J Phys Chem A ; 116(20): 5008-17, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22536920

RESUMEN

The singlet ground states and lowest triplet states of penta- and heptafulvene, their benzannulated derivatives, as well as the lowest quintet states of pentaheptafulvalenes, either the parent compound or compounds in which the two rings are intercepted by either an alkynyl or a phenyl segment, were investigated at the (U)OLYP/6-311G(d,p) density functional theory level. The influence of (anti)aromaticity was analyzed by the structure-based aromaticity index HOMA, the harmonic oscillator model of aromaticity. The extent of (anti)aromatic character was also evaluated in terms of the π-electron (de)localization as measured by the π component of the electron localization function (ELF(π)). The natural atomic orbital (NAO) occupancies were calculated in order to evaluate the degree of π-electron shift caused by the opposing electron-counting rules for aromaticity in the electronic ground state (S(0); Hückel's rule) and the first ππ* excited triplet state (T(1); Baird's rule). Pentaheptafulvalene (5) shows a shift of 0.5 π electrons from the 5-ring to the 7-ring when going from the S(0) state to the lowest quintet state (Qu(1)). The pentaheptafulvalene 5 and [5.6.7]quinarene 7 were also investigated in their 90° twisted conformations. From our study it is apparent that excitation localization in fulvalenes, but not in fulvenes, to a substantial degree is determined by aromaticity localization to triplet biradical 4n π-electron cycles. Isolated benzene rings in these compounds tend to remain as closed-shell 6π-electron cycles.

8.
ChemSusChem ; 14(11): 2414-2425, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33851793

RESUMEN

By extracting lignin, pulp production can be increased without heavy investments in a new recovery boiler, the typical bottleneck of a pulp mill. The extraction is performed by using 0.20 and 0.15 weight equivalents of CO2 and H2 SO4 respectively. Herein, we describe lignin esterification with fatty acids using benign reagents to generate a lignin ester mixable with gas oils. The esterification is accomplished by activating the fatty acid and lignin with acetic anhydride which can be regenerated from the acetic acid recycled in this reaction. The resulting mass balance ratio is fatty acid/lignin/acetic acid (2 : 1 : 0.1). This lignin ester can be hydroprocessed to generate hydrocarbons in gasoline, aviation, and diesel range. A 300-hour continuous production of fuel was accomplished. By recirculating reagents from both the esterification step and applying a water gas shift reaction on off-gases from the hydroprocessing, a favorable overall mass balance is realized.

9.
J Org Chem ; 75(23): 8060-8, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21067236

RESUMEN

The extent of substituent influence on the vertical electron affinities (EAs) and ionization energies (IEs) of 43 substituted tria-, penta-, and heptafulvenes was examined computationally at the OVGF/6-311G(d)//B3LYP/6-311G(d) level of theory and compared with those of tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) as representing strong electron-acceptor and -donor compounds, respectively. The substituents X at the exocyclic positions of the fulvenes were either NH(2), H, or CN, while the substituents Y at the ring positions were H, Cl, F, CN, or NH(2). The variations of the EAs and IEs were rationalized by qualitative arguments based on frontier orbital symmetries for the different fulvene classes with either X or Y being constant. The minimum and maximum values found for the calculated EAs of the tria-, penta-, and heptafulvenes were 0.51-2.05, 0.24-3.63, and 0.53-3.14 eV, respectively, and for the IEs 5.27-9.96, 7.07-10.31, and 6.35-10.59 eV, respectively. Two of the investigated fulvenes outperform TCNQ (calcd EA = 2.63 eV) and one outperforms TTF (calcd IE = 6.25 eV) with regard to acceptor and donor abilities, respectively. We also evaluated the properties of bis(fulvene)s, i.e., compounds composed of a donor-type heptafulvene fused with an acceptor-type pentafulvene, and it was revealed that these bis(fulvene)s can be designed so that the IE and EA of the two separate fulvene segments are retained, potentially allowing for the design of compact donor-acceptor dyads.

10.
Chem Asian J ; 14(10): 1870-1878, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30659757

RESUMEN

Due to the reversal in electron counts for aromaticity and antiaromaticity in the closed-shell singlet state (normally ground state, S0 ) and lowest ππ* triplet state (T1 or T0 ), as given by Hückel's and Baird's rules, respectively, fulvenes are influenced by their substituents in the opposite manner in the T1 and S0 states. This effect is caused by a reversal in the dipole moment when going from S0 to T1 as fulvenes adapt to the difference in electron counts for aromaticity in various states; they are aromatic chameleons. Thus, a substituent pattern that enhances (reduces) fulvene aromaticity in S0 reduces (enhances) aromaticity in T1 , allowing for rationalizations of the triplet state energies (ET ) of substituted fulvenes. Through quantum chemical calculations, we now assess which substituents and which positions on the pentafulvene core are the most powerful for designing compounds with low or inverted ET . As a means to increase the π-electron withdrawing capacity of cyano groups, we found that protonation at the cyano N atoms of 6,6-dicyanopentafulvenes can be a route to on-demand formation of a fulvenium dication with a triplet ground state (T0 ). The five-membered ring of this species is markedly Baird-aromatic, although less than the cyclopentadienyl cation known to have a Baird-aromatic T0 state.

11.
Dalton Trans ; 47(33): 11572-11585, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30087966

RESUMEN

By systematic measurements we have evaluated a series of tetraphenyl metalloporphyrins and halogenated tetraphenyl metalloporphyrin derivatives for binding to ligands with oxygen containing functional groups, using methanol, acetic acid and acetone as examples. Experimental binding constants identified three metalloporphyrins with good binding to all three ligands: MgTPFPP, MgTPPBr8 and ZnTPPBr8 as well as a range of porphyrins binding to select ligands. Based on these results the optimal porphyrins can be selected for the desired binding interactions. We also show how to use DFT calculations to evaluate the potential binding between a metalloporphyrin and a ligand, which is deduced from free energies of binding ΔG, charge transfer ΔQ, and change of metal spin state. Computations on unsubstituted porphyrins in lieu of tetraphenyl porphyrin systems yield reliable predictions of binding interactions with good correlation to the corresponding experimental data. The calculations have also yielded interesting insights into the effect of halogenation in the ß-position on the binding to ligands with oxygen containing functional groups.

12.
ChemSusChem ; 9(12): 1392-6, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27246391

RESUMEN

Precipitated kraft lignin from black liquor was converted into green diesel in three steps. A mild Ni-catalyzed transfer hydrogenation/hydrogenolysis using 2-propanol generated a lignin residue in which the ethers, carbonyls, and olefins were reduced. An organocatalyzed esterification of the lignin residue with an in situ prepared tall oil fatty acid anhydride gave an esterified lignin residue that was soluble in light gas oil. The esterified lignin residue was coprocessed with light gas oil in a continous hydrotreater to produce a green diesel. This approach will enable the development of new techniques to process commercial lignin in existing oil refinery infrastructures to standardized transportation fuels in the future.


Asunto(s)
Biocombustibles , Tecnología Química Verde/métodos , Lignina/química
13.
ChemSusChem ; 8(13): 2187-92, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25925736

RESUMEN

A Pd/C catalyzed redox neutral C¢O bond cleavage of 2-aryloxy-1-arylethanols has been developed. The reactions are carried out at 80 °C, in air, using a green solvent system to yield the aryl ketones in near quantitative yields. Addition of catalytic amounts of a hydrogen source to the reaction mixture activates the catalyst to proceed through a low energy barrier pathway. Initial studies support a transfer hydrogenolysis reaction mechanism that proceeds through an initial dehydrogenation followed by an enol adsorption to Pd/C and a reductive C¢O bond cleavage.


Asunto(s)
Carbono/química , Éteres/química , Paladio/química , Catálisis , Cetonas/química , Lignina/química , Oxidación-Reducción
14.
ChemSusChem ; 8(13): 2142, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26118361

RESUMEN

Invited for this month's cover is the group of Joseph Samec at Uppsala University. The image shows that native lignin ß-O-4' bond model compounds react at very mild and accurately tuned redox-neutral conditions while other models have higher hydrogen and temperature demands. The Communication itself is available at 10.1002/cssc.201500117.


Asunto(s)
Carbono/química , Éteres/química , Paladio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA