Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Breast Cancer Res ; 23(1): 57, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020697

RESUMEN

BACKGROUND: Endocrine therapies targeting estrogen signaling have significantly improved breast cancer (BC) patient survival, although 40% of ERα-positive BCs do not respond to those therapies. Aside from genomic signaling, estrogen triggers non-genomic pathways by forming a complex containing methylERα/Src/PI3K, a hallmark of aggressiveness and resistance to tamoxifen. We aimed to confirm the prognostic value of this complex and investigated whether its targeting could improve tumor response in vivo. METHODS: The interaction of ERα/Src and ERα/PI3K was studied by proximity ligation assay (PLA) in a cohort of 440 BC patients. We then treated patient-derived BC xenografts (PDXs) with fulvestrant or the PI3K inhibitor alpelisib (BYL719) alone or in combination. We analyzed their anti-proliferative effects on 6 ERα+ and 3 ERα- PDX models. Genomic and non-genomic estrogen signaling were assessed by measuring ERα/PI3K interaction by PLA and the expression of estrogen target genes by RT-QPCR, respectively. RESULTS: We confirmed that ERα/Src and ERα/PI3K interactions were associated with a trend to poorer survival, the latter displaying the most significant effects. In ERα+ tumors, the combination of BYL719 and fulvestrant was more effective than fulvestrant alone in 3 models, irrespective of PI3K, PTEN status, or ERα/PI3K targeting. Remarkably, resistance to fulvestrant was associated with non-genomic ERα signaling, since genomic degradation of ERα was unaltered in these tumors, whereas the treatment did not diminish the level of ERα/PI3K interaction. Interestingly, in 2 ERα- models, fulvestrant alone impacted tumor growth, and this was associated with a decrease in ERα/PI3K interaction. CONCLUSIONS: Our results demonstrate that ERα/PI3K may constitute a new prognostic marker, as well as a new target in BC. Indeed, resistance to fulvestrant in ERα+ tumors was associated with a lack of impairment of ERα/PI3K interaction in the cytoplasm. In addition, an efficient targeting of ERα/PI3K in ERα- tumors could constitute a promising therapeutic option.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Fulvestrant/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Receptores de Estrógenos/metabolismo , Tiazoles/uso terapéutico , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Genómica , Humanos , Ratones , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Molecules ; 26(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34443393

RESUMEN

Zizyphus lotus L. (Desf.) (Z. lotus) is a medicinal plant largely distributed all over the Mediterranean basin and is traditionally used by Moroccan people to treat many illnesses, including kidney failure. The nephrotoxicity of gentamicin (GM) has been well documented in humans and animals, although the preventive strategies against it remain to be studied. In this investigation, we explore whether the extract of Zizyphus lotus L. (Desf.) Fruit (ZLF) exhibits a protective effect against renal damage produced by GM. Indeed, twenty-four Wistar rats were separated into four equal groups of six each (♂/♀ = 1). The control group was treated orally with distilled water (10 mL/kg); the GM treated group received distilled water (10 mL/kg) and an intraperitoneal injection of GM (80 mg/kg) 3 h after; and the treated groups received ZLF extract orally at the doses 200 or 400 mg/kg and injected intraperitoneally with the GM. All treatments were given daily for 14 days. At the end of the experiment, the biochemical parameters and the histological observation related the kidney function was explored. ZLF treatment has significantly attenuated the nephrotoxicity induced by the GM. This effect was indicated by its capacity to decrease significantly the serum creatinine, uric acid, urea, alkaline phosphatase, gamma-glutamyl-transpeptidase, albumin, calcium, sodium amounts, water intake, urinary volume, and relative kidney weight. In addition, this effect was also shown by the increase in the creatinine clearance, urinary creatinine, uric acid, and urea levels, weight gain, compared to the rats treated only with the GM. The hemostasis of oxidants/antioxidants has been significantly improved with the treatment of ZLF extract, which was shown by a significant reduction in malondialdehydes levels. Histopathological analysis of renal tissue was correlated with biochemical observation. Chemical analysis by HPLC-DAD showed that the aqueous extract of ZLF is rich in phenolic compounds such as 3-hydroxycinnamic acid, catechin, ferulic acid, gallic acid, hydroxytyrosol, naringenin, p- coumaric Acid, quercetin, rutin, and vanillic acid. In conclusion, ZLF extract improved the nephrotoxicity induced by GM, through the improvement of the biochemical and histological parameters and thus validates its ethnomedicinal use.


Asunto(s)
Lesión Renal Aguda/patología , Citoprotección/efectos de los fármacos , Frutas/química , Gentamicinas/efectos adversos , Riñón/efectos de los fármacos , Extractos Vegetales/farmacología , Ziziphus/química , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Modelos Animales de Enfermedad , Riñón/metabolismo , Riñón/patología , Ratas , Ratas Wistar
3.
Int J Cancer ; 145(7): 1902-1912, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30859564

RESUMEN

Triple-negative breast cancer (TNBC) represents 10% of all breast cancers and is a very heterogeneous disease. Globally, women with TNBC have a poor prognosis, and the development of effective targeted therapies remains a real challenge. Patient-derived xenografts (PDX) are clinically relevant models that have emerged as important tools for the analysis of drug activity and predictive biomarker discovery. The purpose of this work was to analyze the molecular heterogeneity of a large panel of TNBC PDX (n = 61) in order to test targeted therapies and identify biomarkers of response. At the gene expression level, TNBC PDX represent all of the various TNBC subtypes identified by the Lehmann classification except for immunomodulatory subtype, which is underrepresented in PDX. NGS and copy number data showed a similar diversity of significantly mutated gene and somatic copy number alteration in PDX and the Cancer Genome Atlas TNBC patients. The genes most commonly altered were TP53 and oncogenes and tumor suppressors of the PI3K/AKT/mTOR and MAPK pathways. PDX showed similar morphology and immunohistochemistry markers to those of the original tumors. Efficacy experiments with PI3K and MAPK inhibitor monotherapy or combination therapy showed an antitumor activity in PDX carrying genomic mutations of PIK3CA and NRAS genes. TNBC PDX reproduce the molecular heterogeneity of TNBC patients. This large collection of PDX is a clinically relevant platform for drug testing, biomarker discovery and translational research.


Asunto(s)
Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias de la Mama Triple Negativas/genética , Animales , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , GTP Fosfohidrolasas/genética , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Humanos , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , Terapia Molecular Dirigida , Trasplante de Neoplasias , Medicina de Precisión , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/genética
4.
BMC Cancer ; 14: 178, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24625025

RESUMEN

BACKGROUND: Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. METHODS: To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. RESULTS: As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. CONCLUSIONS: Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies.


Asunto(s)
Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Neoplasias Experimentales/genética , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/genética , Inhibidores de la Angiogénesis/farmacología , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Bevacizumab , Biomarcadores de Tumor/metabolismo , Células Endoteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nat Commun ; 15(1): 7941, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266532

RESUMEN

Dedifferentiated liposarcoma (DDLPS) is the most frequent high-grade soft tissue sarcoma subtype. It is characterized by a component of undifferentiated tumor cells coexisting with a component of well-differentiated adipocytic tumor cells. Both dedifferentiated (DD) and well-differentiated (WD) components exhibit MDM2 amplification, however their cellular origin remains elusive. Using single-cell RNA sequencing, DNA sequencing, in situ multiplex immunofluorescence and functional assays in paired WD and DD components from primary DDLPS tumors, we characterize the cellular heterogeneity of DDLPS tumor and micro-environment. We identify a population of tumor adipocyte stem cells (ASC) showing striking similarities with adipocyte stromal progenitors found in white adipose tissue. We show that tumor ASC harbor the ancestral genomic alterations of WD and DD components, suggesting that both derive from these progenitors following clonal evolution. Last, we show that DD tumor cells keep important biological properties of ASC including pluripotency and that their adipogenic properties are inhibited by a TGF-ß-high immunosuppressive tumor micro-environment.


Asunto(s)
Adipocitos , Evolución Clonal , Liposarcoma , Proteínas Proto-Oncogénicas c-mdm2 , Microambiente Tumoral , Humanos , Liposarcoma/genética , Liposarcoma/patología , Liposarcoma/metabolismo , Adipocitos/patología , Adipocitos/metabolismo , Microambiente Tumoral/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Análisis de la Célula Individual , Femenino , Desdiferenciación Celular/genética , Masculino , Diferenciación Celular/genética , Factor de Crecimiento Transformador beta/metabolismo , Persona de Mediana Edad , Anciano
6.
Mol Oncol ; 17(10): 2017-2028, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36852691

RESUMEN

Triple negative breast cancers (TNBCs) represent 15-20% of all breast cancers and are associated with higher recurrence and distant metastasis rate. Standard of care for early stage TNBC is anthracyclines combined with cyclophosphamide (AC) followed by taxanes, in the neo-adjuvant or adjuvant setting. This work aimed to identify predictive biomarkers of AC response in patient-derived xenograft (PDX) models of TNBC and to validate them in the clinical setting. By gene and protein expression analysis of 39 PDX with different responses to AC, we found that high expression of HORMAD1 was associated with better response to AC. Both gene and protein expression were associated with promoter hypomethylation. In a cohort of 526 breast cancer patients, HORMAD1 was overexpressed in 71% of TNBC. In a second cohort of 186 TNBC patients treated with AC, HORMAD1 expression was associated with longer metastasis-free survival (MFS). In summary, HORMAD1 overexpression was predictive of an improved response to AC in PDX and is an independent prognostic factor in TNBC patients treated with AC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Supervivencia sin Enfermedad , Antibióticos Antineoplásicos/uso terapéutico , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Proteínas de Ciclo Celular
7.
Nat Commun ; 14(1): 4221, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452026

RESUMEN

Resistance to endocrine treatments and CDK4/6 inhibitors is considered a near-inevitability in most patients with estrogen receptor positive breast cancers (ER + BC). By genomic and metabolomics analyses of patients' tumours, metastasis-derived patient-derived xenografts (PDX) and isogenic cell lines we demonstrate that a fraction of metastatic ER + BC is highly reliant on oxidative phosphorylation (OXPHOS). Treatment by the OXPHOS inhibitor IACS-010759 strongly inhibits tumour growth in multiple endocrine and palbociclib resistant PDX. Mutations in the PIK3CA/AKT1 genes are significantly associated with response to IACS-010759. At the metabolic level, in vivo response to IACS-010759 is associated with decreased levels of metabolites of the glutathione, glycogen and pentose phosphate pathways in treated tumours. In vitro, endocrine and palbociclib resistant cells show increased OXPHOS dependency and increased ROS levels upon IACS-010759 treatment. Finally, in ER + BC patients, high expression of OXPHOS associated genes predict poor prognosis. In conclusion, these results identify OXPHOS as a promising target for treatment resistant ER + BC patients.


Asunto(s)
Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosforilación Oxidativa , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores de Estrógenos/metabolismo , Modelos Animales de Enfermedad
8.
J Neurosurg ; 139(5): 1270-1280, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029667

RESUMEN

OBJECTIVE: Chordomas are rare bone neoplasms characterized by a high recurrence rate and no benefit from any approved medical treatment to date. However, the investigation of molecular alterations in chordomas could be essential to prognosticate, guide clinical decision-making, and identify theranostic biomarkers. The aim of this study was to provide a detailed genomic landscape of a homogeneous series of 64 chordoma samples, revealing driver events, theranostic markers, and outcome-related genomic features. METHODS: The authors conducted whole-exome sequencing (WES), targeted next-generation sequencing, and RNA sequencing of 64 skull base and spinal chordoma samples collected between December 2006 and September 2020. Clinical, histological, and radiological data were retrospectively analyzed and correlated to genetic findings. RESULTS: The authors identified homozygous deletions of CDKN2A/2B, PIK3CA mutations, and alterations affecting genes of SWI/SNF chromatin remodeling complexes (PBRM1 and ARID1A) as potential theranostic biomarkers. Using matched germline WES, they observed a higher frequency of a common genetic variant (rs2305089; p.(Gly177Asp)) in TBXT (97.8%, p < 0.001) compared to its distribution in the general population. PIK3CA mutation was identified as an independent biomarker of short progression-free survival (HR 10.68, p = 0.0008). Loss of CDKN2A/2B was more frequently observed in spinal tumors and recurrent tumors. CONCLUSIONS: In the current study, the authors identified driver events such as PBRM1 and PIK3CA mutations, TBXT alterations, or homozygous deletions of CDKN2A/2B, which could, for some, be considered potential theranostic markers and could allow for identifying novel therapeutic approaches. With the aim of a future biomolecular prognostication classification, alterations affecting PIK3CA and CDKN2A/2B could be considered as poor prognostic biomarkers.


Asunto(s)
Cordoma , Neoplasias de la Base del Cráneo , Neoplasias de la Columna Vertebral , Humanos , Pronóstico , Cordoma/patología , Neoplasias de la Columna Vertebral/genética , Medicina de Precisión , Estudios Retrospectivos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Biomarcadores , Neoplasias de la Base del Cráneo/patología , Base del Cráneo/patología , Fosfatidilinositol 3-Quinasa Clase I/genética
9.
Nat Commun ; 14(1): 1958, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029129

RESUMEN

The high frequency of homologous recombination deficiency (HRD) is the main rationale of testing platinum-based chemotherapy in triple-negative breast cancer (TNBC), however, the existing methods to identify HRD are controversial and there is a medical need for predictive biomarkers. We assess the in vivo response to platinum agents in 55 patient-derived xenografts (PDX) of TNBC to identify determinants of response. The HRD status, determined from whole genome sequencing, is highly predictive of platinum response. BRCA1 promoter methylation is not associated with response, in part due to residual BRCA1 gene expression and homologous recombination proficiency in different tumours showing mono-allelic methylation. Finally, in 2 cisplatin sensitive tumours we identify mutations in XRCC3 and ORC1 genes that are functionally validated in vitro. In conclusion, our results demonstrate that the genomic HRD is predictive of platinum response in a large cohort of TNBC PDX and identify alterations in XRCC3 and ORC1 genes driving cisplatin response.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Platino (Metal)/uso terapéutico , Proteína BRCA1/genética , Recombinación Homóloga , Mutación , Secuenciación Completa del Genoma , Proteína BRCA2/genética
10.
Development ; 136(16): 2791-801, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633172

RESUMEN

Integrins are the major adhesive receptors for extracellular matrix and have various roles in development. To determine their role in cell migration, the gene encoding the beta1 integrin subunit (Itgb1) was conditionally deleted in mouse neural crest cells just after their emigration from the neural tube. We previously identified a major defect in gut colonisation by conditional Itgb1-null enteric neural crest cells (ENCCs) resulting from their impaired migratory abilities and enhanced aggregation properties. Here, we show that the migration defect occurs primarily during the invasion of the caecum, when Itgb1-null ENCCs stop their normal progression before invading the caecum and proximal hindgut by becoming abnormally aggregated. We found that the caecum and proximal hindgut express high levels of fibronectin and tenascin-C, two well-known ligands of integrins. In vitro, tenascin-C and fibronectin have opposite effects on ENCCs, with tenascin-C decreasing migration and adhesion and fibronectin strongly promoting them. Itgb1-null ENCCs exhibited an enhanced response to the inhibitory effect of tenascin-C, whereas they were insensitive to the stimulatory effect of fibronectin. These findings suggest that beta1 integrins are required to overcome the tenascin-C-mediated inhibition of migration within the caecum and proximal hindgut and to enhance fibronectin-dependent migration in these regions.


Asunto(s)
Ciego , Movimiento Celular/fisiología , Integrina beta1/metabolismo , Mucosa Intestinal , Intestinos , Cresta Neural/citología , Animales , Biomarcadores/metabolismo , Ciego/citología , Ciego/embriología , Ciego/metabolismo , Adhesión Celular/fisiología , Forma de la Célula , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/fisiología , Fibronectinas/metabolismo , Integrina beta1/genética , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/embriología , Ratones , Ratones Noqueados , Tenascina/metabolismo , Técnicas de Cultivo de Tejidos
11.
Front Oncol ; 12: 960720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505864

RESUMEN

Background: Management of advanced chordomas remains delicate considering their insensitivity to chemotherapy. Homozygous deletion of the regulatory gene CDKN2A has been described as the most frequent genetic alteration in chordomas and may be considered as a potential theranostic marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma patient-derived xenograft (PDX) models to validate and identify novel therapeutic approaches. Methods: From our chordoma xenograft panel, we selected three models, two of them harboring a homozygous deletion of CDKN2A/2B genes, and the last one a PBRM1 pathogenic variant (as control). For each model, we tested the palbociclib and volasertib drugs with pharmacodynamic studies together with RT-PCR and RNAseq analyses. Results: For palbociclib, we observed a significant tumor response for one of two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe any response in the three tested models. RT-PCR and RNAseq analyses showed a correlation between cell cycle markers and responses to palbociclib; finally, RNAseq analyses showed a natural enrichment of the oxidative phosphorylation genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02). Conclusion: CDK4/6 inhibition appears as a promising strategy to manage advanced chordomas harboring a loss of CDKN2A/2B. However, further preclinical studies are strongly requested to confirm it and to understand acquired or de novo resistance to palbociclib, in the peculiar view of a targeting of the oxidative phosphorylation genes.

12.
Nat Genet ; 54(4): 459-468, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35410383

RESUMEN

The persistence of cancer cells resistant to therapy remains a major clinical challenge. In triple-negative breast cancer, resistance to chemotherapy results in the highest recurrence risk among breast cancer subtypes. The drug-tolerant state seems largely defined by nongenetic features, but the underlying mechanisms are poorly understood. Here, by monitoring epigenomes, transcriptomes and lineages with single-cell resolution, we show that the repressive histone mark H3K27me3 (trimethylation of histone H3 at lysine 27) regulates cell fate at the onset of chemotherapy. We report that a persister expression program is primed with both H3K4me3 (trimethylation of histone H3 at lysine 4) and H3K27me3 in unchallenged cells, with H3K27me3 being the lock to its transcriptional activation. We further demonstrate that depleting H3K27me3 enhances the potential of cancer cells to tolerate chemotherapy. Conversely, preventing H3K27me3 demethylation simultaneously to chemotherapy inhibits the transition to a drug-tolerant state, and delays tumor recurrence in vivo. Our results highlight how chromatin landscapes shape the potential of cancer cells to respond to initial therapy.


Asunto(s)
Resistencia a Antineoplásicos , Histonas , Neoplasias de la Mama Triple Negativas , Resistencia a Antineoplásicos/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Recurrencia Local de Neoplasia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
13.
Cancers (Basel) ; 14(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35326637

RESUMEN

Chordomas are rare neoplasms characterized by a high recurrence rate and a poor long-term prognosis. Considering their chemo-/radio-resistance, alternative treatment strategies are strongly required, but their development is limited by the paucity of relevant preclinical models. Mutations affecting genes of the SWI/SNF complexes are frequently found in chordomas, suggesting a potential therapeutic effect of epigenetic regulators in this pathology. Twelve PDX models were established and characterized on histological and biomolecular features. Patients whose tumors were able to grow into mice had a statistically significant lower progression-free survival than those whose tumors did not grow after in vivo transplantation (p = 0.007). All PDXs maintained the same histopathological features as patients' tumors. Homozygous deletions of CDKN2A/2B (58.3%) and PBRM1 (25%) variants were the most common genomic alterations found. In the tazemetostat treated PDX model harboring a PBRM1 variant, an overall survival of 100% was observed. Our panel of chordoma PDXs represents a useful preclinical tool for both pharmacologic and biological assessments. The first demonstration of a high antitumor activity of tazemetostat in a PDX model harboring a PBRM1 variant supports further evaluation for EZH2-inhibitors in this subgroup of chordomas.

14.
Commun Biol ; 5(1): 373, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440675

RESUMEN

Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Factor de Transcripción GATA3/genética , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-mdm2/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
15.
Adv Sci (Weinh) ; 8(17): e2101614, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34250755

RESUMEN

Under conditions of starvation, normal and tumor epithelial cells can rewire their metabolism toward the consumption of extracellular proteins, including extracellular matrix-derived components as nutrient sources. The mechanism of pericellular matrix degradation by starved cells has been largely overlooked. Here it is shown that matrix degradation by breast and pancreatic tumor cells and patient-derived xenograft explants increases by one order of magnitude upon amino acid and growth factor deprivation. In addition, it is found that collagenolysis requires the invadopodia components, TKS5, and the transmembrane metalloproteinase, MT1-MMP, which are key to the tumor invasion program. Increased collagenolysis is controlled by mTOR repression upon nutrient depletion or pharmacological inhibition by rapamycin. The results reveal that starvation hampers clathrin-mediated endocytosis, resulting in MT1-MMP accumulation in arrested clathrin-coated pits. The study uncovers a new mechanism whereby mTOR repression in starved cells leads to the repurposing of abundant plasma membrane clathrin-coated pits into robust ECM-degradative assemblies.


Asunto(s)
Aminoácidos/metabolismo , Neoplasias de la Mama/metabolismo , Endocitosis , Matriz Extracelular/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones
16.
J Hematol Oncol ; 14(1): 143, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496925

RESUMEN

Malignant adenomyoepithelioma (AME) of the breast is an exceptionally rare form of breast cancer, with a significant metastatic potential. Chemotherapy has been used in the management of advanced AME patients, however the majority of treatments are not effective. Recent studies report recurrent mutations in the HRAS Q61 hotspot in small series of AMEs, but there are no preclinical or clinical data showing H-Ras protein as a potential therapeutic target in malignant AMEs. We performed targeted sequencing of tumours' samples from new series of 13 AMEs, including 9 benign and 4 malignant forms. Samples from the breast tumour and the matched axillary metastasis of one malignant HRAS mutated AME were engrafted and two patient-derived xenografts (PDX) were established that reproduced the typical AME morphology. The metastasis-derived PDX was treated in vivo by different chemotherapies and a combination of MEK and BRAF inhibitors (trametinib and dabrafenib). All malignant AMEs presented a recurrent mutation in the HRAS G13R or G12S hotspot. Mutation of PIK3CA were found in both benign and malignant AMEs, while AKT1 mutations were restricted to benign AMEs. Treatment of the PDX by the MEK inhibitor trametinib, resulted in a marked anti-tumor activity, in contrast to the BRAF inhibitor and the different chemotherapies that were ineffective. Overall, these findings further expand on the genetic features of AMEs and suggest that patients carrying advanced HRAS-mutated AMEs could potentially be treated with MEK inhibitors.


Asunto(s)
Adenomioepitelioma/genética , Neoplasias de la Mama/genética , Mutación Puntual , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenomioepitelioma/tratamiento farmacológico , Adenomioepitelioma/patología , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Femenino , Humanos , Imidazoles/uso terapéutico , Persona de Mediana Edad , Oximas/uso terapéutico , Mutación Puntual/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico
17.
Anticancer Drugs ; 21(10): 927-31, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20827173

RESUMEN

Androgen-dependent and castration-resistant prostate cancer (PC) is usually sensitive to docetaxel chemotherapy. Nevertheless, docetaxel resistance frequently appears after several cycles of treatment, raising the problem of salvage treatment for docetaxel-resistant PC patients. Although the combination of docetaxel and estramustine prolongs metastasis-free and overall survival of patients with androgen-independent PC, the use of this modality remains limited in elderly patients or patients with several comorbidities, especially vascular disease or gastrointestinal toxicity, because of unacceptable toxicity including venous thrombosis. The aims of this study were therefore (i) to evaluate the in-vivo efficacy of estramustine combined with docetaxel since initial tumor growth and following the appearance of docetaxel resistance in the androgen-dependent human PC xenograft PAC120, and (ii) to evaluate the efficacy of estramustine in six human androgen-independent PC models derived from PAC120. In docetaxel-resistant tumor-bearing mice, estramustine alone induced a TGD2 of 18 days, whereas the combination of docetaxel and estramustine induced a TGD2 of 50 days (P<0.05) with no significantly different overall survival of mice treated by docetaxel and estramustine since day 1 or since the onset of resistance to docetaxel. Among the six human androgen-independent tumors treated with estramustine alone, two highly sensitive models, two intermediate responding tumors, and two resistant models were observed. Altogether, these results suggest that estramustine should be combined with docetaxel in PC patients, but the use of this treatment could be limited, particularly in elderly patients, to docetaxel-resistant cases.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Estramustina/farmacología , Enfermedades Gastrointestinales , Neoplasias de la Próstata/tratamiento farmacológico , Taxoides/farmacología , Enfermedades Vasculares , Anciano , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Comorbilidad , Docetaxel , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos , Enfermedades Gastrointestinales/epidemiología , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias Hormono-Dependientes/sangre , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Neoplasias Hormono-Dependientes/epidemiología , Orquiectomía , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/epidemiología , Tasa de Supervivencia , Enfermedades Vasculares/epidemiología , Trombosis de la Vena/inducido químicamente , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Theranostics ; 10(4): 1531-1543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042320

RESUMEN

Luminal androgen receptor (LAR) breast cancer accounts for 10% of all triple-negative breast cancers (TNBC). Anti-androgen therapy for this subtype is in development, but yields only partial clinical benefits. In this study, we aimed to characterize the genomic alterations of LAR TNBC, to analyze activation of the PI3K signaling pathway and to compare the response to PI3K pathway inhibitors with that to anti-androgen therapy in patient-derived xenografts (PDX) of LAR TNBC. Methods: Four LAR PDX models were identified, on the basis of their transcriptomic profiles, in a cohort of 57 PDX models of TNBC. The expression of AR-related genes, basal and luminal cytokeratins and EMT genes was analyzed by RT-PCR and IHC. AKT1 and PIK3CA mutations were identified by targeted NGS, and activation of the PI3K pathway was analyzed with a reverse-phase protein array. Three LAR PDXs with a PIK3CA or AKT1 mutation were treated with the AR inhibitor enzalutamide, a PI3K inhibitor, a dual PI3K-mTOR inhibitor and a mTORC1-mTORC2 inhibitor. Finally, we screened a clinical cohort of 329 TNBC for PIK3CA and AKT1 hotspot mutations. Results: LAR TNBC PDXs were significantly enriched in PIK3CA and AKT1 mutations, and had higher levels of luminal-androgen-like gene expression and a higher PI3K pathway protein activation score than other TNBC subtypes. Immunohistochemistry analysis revealed strong expression of the luminal cytokeratin CK18 and AR in three LAR PDX models. We found that mTOR and PI3K inhibitors had marked antitumor activity in vivo in PDX harboring genomic alterations of PIK3CA and AKT1 genes that did not respond to the AR antagonist enzalutamide. PIK3CA mutations were detected in more than one third of AR+ TNBC from patients (38%), and only 10% of AR-negative TNBC. Conclusion: Our results for PDX models of LAR TNBC resistant to enzalutamide indicate that PIK3CA and AKT1 are potential therapeutic targets.


Asunto(s)
Xenoinjertos/efectos de los fármacos , Receptores Androgénicos/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Anciano de 80 o más Años , Benzamidas , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Mutación , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores Androgénicos/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama Triple Negativas/patología
19.
Nat Commun ; 11(1): 4053, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792481

RESUMEN

A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Here we perform whole exome sequencing and gene expression analysis of matched primary breast tumours and bone metastasis-derived patient-derived xenografts (PDX). Transcriptomic analyses reveal enrichment of the G2/M checkpoint and up-regulation of Polo-like kinase 1 (PLK1) in PDX. PLK1 inhibition results in tumour shrinkage in highly proliferating CCND1-driven PDX, including different RB-positive PDX with acquired palbociclib resistance. Mechanistic studies in endocrine resistant cell lines, suggest an ER-independent function of PLK1 in regulating cell proliferation. Finally, in two independent clinical cohorts of ER positive BC, we find a strong association between high expression of PLK1 and a shorter metastases-free survival and poor response to anastrozole. In conclusion, our findings support clinical development of PLK1 inhibitors in patients with advanced CCND1-driven BC, including patients progressing on palbociclib treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Secuenciación del Exoma/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Ciclina D1/genética , Variaciones en el Número de Copia de ADN/genética , Resistencia a Antineoplásicos/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Desnudos , Piperazinas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Pteridinas/uso terapéutico , Piridinas/uso terapéutico , Quinasa Tipo Polo 1
20.
Sci Transl Med ; 12(531)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075943

RESUMEN

Topoisomerase I (TOP1) inhibitors trap TOP1 cleavage complexes resulting in DNA double-strand breaks (DSBs) during replication, which are repaired by homologous recombination (HR). Triple-negative breast cancer (TNBC) could be eligible for TOP1 inhibitors given the considerable proportion of tumors with a defect in HR-mediated repair (BRCAness). The TOP1 inhibitor irinotecan was tested in 40 patient-derived xenografts (PDXs) of TNBC. BRCAness was determined with a single-nucleotide polymorphism (SNP) assay, and expression of Schlafen family member 11 (SLFN11) and retinoblastoma transcriptional corepressor 1 (RB1) was evaluated by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry analyses. In addition, the combination of irinotecan and the ataxia telangiectasia and Rad3-related protein (ATR) inhibitor VE-822 was tested in SLFN11-negative PDXs, and two clinical non-camptothecin TOP1 inhibitors (LMP400 and LMP776) were tested. Thirty-eight percent of the TNBC models responded to irinotecan. BRCAness combined with high SLFN11 expression and RB1 loss identified highly sensitive tumors, consistent with the notion that deficiencies in cell cycle checkpoints and DNA repair result in high sensitivity to TOP1 inhibitors. Treatment by the ATR inhibitor VE-822 increased sensitivity to irinotecan in SLFN11-negative PDXs and abolished irinotecan-induced phosphorylation of checkpoint kinase 1 (CHK1). LMP400 (indotecan) and LMP776 (indimitecan) showed high antitumor activity in BRCA1-mutated or BRCAness-positive PDXs. Last, low SLFN11 expression was associated with poor survival in 250 patients with TNBC treated with anthracycline-based chemotherapy. In conclusion, a substantial proportion of TNBC respond to irinotecan. BRCAness, high SLFN11 expression, and RB1 loss are highly predictive of response to irinotecan and the clinical indenoisoquinoline TOP1 inhibitors.


Asunto(s)
Inhibidores de Topoisomerasa I , Neoplasias de la Mama Triple Negativas , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Proteínas Nucleares/metabolismo , Proteínas de Unión a Retinoblastoma , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA