Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 195(2): 1461-1474, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38431527

RESUMEN

Black goji berry (Lycium ruthenicum Murray) contains a rich source of health-promoting anthocyanins which are used in herbal medicine and nutraceutical foods in China. A natural variant producing white berries allowed us to identify two key genes involved in the regulation of anthocyanin biosynthesis in goji berries: one encoding a MYB transcription factor (LrAN2-like) and one encoding a basic helix-loop-helix (bHLH) transcription factor (LrAN1b). We previously found that LrAN1b expression was lost in the white berry variant, but the molecular basis for this phenotype was unknown. Here, we identified the molecular mechanism for loss of anthocyanins in white goji berries. In white goji, the LrAN1b promoter region has a 229 bp deletion that removes three MYB-binding elements and one bHLH-binding element, which are key to its expression. Complementation of the white goji berry LrAN1b allele with the LrAN1b promoter restored pigmentation. Virus-induced gene silencing of LrAN1b in black goji berry reduced fruit anthocyanin biosynthesis. Molecular analyses showed that LrAN2-like and another bHLH transcription factor LrJAF13 can activate LrAN1b by binding directly to the MYB-recognizing element and bHLH-recognizing element of its promoter-deletion region. LrAN1b expression is enhanced by the interaction of LrAN2-like with LrJAF13 and the WD40 protein LrAN11. LrAN2-like and LrAN11 interact with either LrJAF13 or LrAN1b to form two MYB-bHLH-WD40 complexes, which hierarchically regulate anthocyanin biosynthesis in black goji berry. This study on a natural variant builds a comprehensive anthocyanin regulatory network that may be manipulated to tailor goji berry traits.


Asunto(s)
Antocianinas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Frutas , Regulación de la Expresión Génica de las Plantas , Lycium , Proteínas de Plantas , Regiones Promotoras Genéticas , Antocianinas/biosíntesis , Antocianinas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Frutas/genética , Frutas/metabolismo , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
BMC Plant Biol ; 24(1): 441, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778301

RESUMEN

BACKGROUND: Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS: We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS: In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.


Asunto(s)
Mapeo Cromosómico , Frutas , Lycium , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Lycium/genética , Lycium/fisiología , Frutas/genética , Frutas/fisiología , Autoincompatibilidad en las Plantas con Flores/genética , Fenotipo , China
3.
Plant Physiol Biochem ; 206: 108285, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38145586

RESUMEN

Stomata are ports that facilitate gas and water vapor exchange during plant photosynthesis and transpiration. Stomatal development is strictly regulated by endogenous hormone. Jasmonate, an important signal that modulates multiple physiological processes in plants, has been found to negatively regulate stomatal development in Arabidopsis thaliana, yet the molecular mechanisms underlying stomata development signaling remain to be understood. Jasmonate ZIM-domain (JAZ) proteins are the members of TIFY family and the key component of JA signaling pathway. Its function in stomatal development is unclear to data. Here, we screened out 24 TIFY family members against the genome of Lycium, and identified a JAZ member by combination analyses of evolutionary tree, cis-elements in promoter and gene expression patterns. Overexpression of this gene (LrJAZ2) in Lycium ruthenicum and Arabidopsis thaliana indicated LrJAZ2 negatively regulates stomatal development. Microscopic observations revealed that overexpression of LrJAZ2 negatively regulated stomatal development by decreasing stomatal density and index, which may lead to lower leaf transpiration rates. Transcriptome data indicated the overexpression of LrJAZ2 up-regulated the stomatal related genes such as LrERL2, LrPYL4, and down-regulated the LrSPCH. Collectively, our study found that LrJAZ2 is a key gene in stomatal development regulation in L. ruthenicum and provided new insights into the regulation of stomatal development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lycium , Arabidopsis/genética , Arabidopsis/metabolismo , Lycium/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA