Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338730

RESUMEN

Light intensity primarily drives plant growth and morphogenesis, whereas the ecological impact of light intensity on the phyllosphere (leaf surface and endosphere) microbiome is poorly understood. In this study, garden lettuce (Lactuca sativa L.) plants were grown under low, medium, and high light intensities. High light intensity remarkably induced the leaf contents of soluble proteins and chlorophylls, whereas it reduced the contents of leaf nitrate. In comparison, medium light intensity exhibited the highest contents of soluble sugar, cellulose, and free amino acids. Meanwhile, light intensity resulted in significant changes in the composition of functional genes but not in the taxonomic compositions of the prokaryotic community (bacteria and archaea) in the phyllosphere. Notably, garden lettuce plants under high light intensity treatment harbored more sulfur-cycling mdh and carbon-cycling glyA genes than under low light intensity, both of which were among the 20 most abundant prokaryotic genes in the leaf phyllosphere. Furthermore, the correlations between prokaryotic functional genes and lettuce leaf metabolite groups were examined to disclose their interactions under varying light intensities. The relative abundance of the mdh gene was positively correlated with leaf total chlorophyll content but negatively correlated with leaf nitrate content. In comparison, the relative abundance of the glyA gene was positively correlated with leaf total chlorophyll and carotenoids. Overall, this study revealed that the functional composition of the phyllosphere prokaryotic community and leaf metabolite groups were tightly linked in response to changing light intensities. These findings provided novel insights into the interactions between plants and prokaryotic microbes in indoor farming systems, which will help optimize environmental management in indoor farms and harness beneficial plant-microbe relationships for crop production.


Asunto(s)
Lactuca , Nitratos , Lactuca/genética , Nitratos/metabolismo , Jardines , Clorofila/metabolismo , Hojas de la Planta/metabolismo
2.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203820

RESUMEN

Microbes employ effectors to disrupt immune responses and promote host colonization. Conserved motifs including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, Chitin-bind, DPBB_1 (PNPi), and Cutinase have been discovered to play crucial roles in the functioning of effectors in filamentous fungi. Nevertheless, little is known about effectors with conserved motifs in endophytes. This research aims to discover the effector genes with conserved motifs in the genome of rice endophyte Falciphora oryzae. SignalP identified a total of 622 secreted proteins, out of which 227 were predicted as effector candidates by EffectorP. By utilizing HMM features, we discovered a total of 169 effector candidates with conserved motifs and three novel motifs. Effector candidates containing LysM, CFEM, DPBB_1, Cutinase, and Chitin_bind domains were conserved across species. In the transient expression assay, it was observed that one CFEM and one LysM activated cell death in tobacco leaves. Moreover, two CFEM and one Chitin_bind inhibited cell death induced by Bax protein. At various points during the infection, the genes' expression levels were increased. These results will help to identify functional effector proteins involving omics methods using new bioinformatics tools, thus providing a basis for the study of symbiosis mechanisms.


Asunto(s)
Ascomicetos , Algoritmos , Bioensayo , Quitina , Endófitos
3.
Acta Pharmacol Sin ; 42(9): 1498-1506, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33288861

RESUMEN

Fibroblast growth factor receptor (FGFR) is a promising anticancer target. Currently, most FGFR inhibitors lack sufficient selectivity and have nonnegligible activity against kinase insert domain receptor (KDR), limiting their feasibility due to the serious side effects. Notably, compensatory activation occurs among FGFR1-4, suggesting the urgent need to develop selective pan-FGFR1-4 inhibitors. Here, we explored the antitumor activity of DW14383, a novel irreversible FGFR1-4 inhibitor. DW14383 exhibited equivalently high potent inhibition against FGFR1, 2, 3 and 4, with IC50 values of less than 0.3, 1.1, less than 0.3, and 0.5 nmol/L, respectively. It is a selective FGFR inhibitor, exhibiting more than 1100-fold selectivity for FGFR1 over recombinant KDR, making it one of the most selective FGFR inhibitors over KDR described to date. Furthermore, DW14383 significantly inhibited cellular FGFR1-4 signaling, inducing G1/S cell cycle arrest, which in turn antagonized FGFR-dependent tumor cell proliferation. In contrast, DW14383 had no obvious antiproliferative effect against cancer cell lines without FGFR aberration, further confirming its selectivity against FGFR. In representative FGFR-dependent xenograft models, DW14383 oral administration substantially suppressed tumor growth by simultaneously inhibiting tumor proliferation and angiogenesis via inhibiting FGFR signaling. In summary, DW14383 is a promising selective irreversible pan-FGFR inhibitor with pan-tumor spectrum potential in FGFR1-4 aberrant cancers, which has the potential to overcome compensatory activation among FGFR1-4.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Administración Oral , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Biotechnol Lett ; 43(10): 2045-2052, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34390483

RESUMEN

OBJECTIVE: To investigate the protoplast preparation and transformation system of endophytic fungus Falciphora oryzae. RESULTS: F. oryzae strain obtained higher protoplast yield and effective transformation when treated with enzyme digestion solution containing 0.9 M KCl solution and 10 mg mL-1 glucanase at 30 °C with shaking at 80 rpm for 2-3 h. When the protoplasts were plated on a regenerations-agar medium containing 1 M sucrose, the re-growth rate of protoplasts was the highest. We successfully acquired green fluorescent protein-expressing transformants by transforming the pKD6-GFP vector into protoplasts. Further, the GFP expression in fungal hyphae possessed good stability and intensity during symbiosis in rice roots. CONCLUSIONS: This study provided a protoplast transformation system of F. oryzae, creating opportunities for future genetic research in other endophytic fungi.


Asunto(s)
Ascomicetos , Endófitos , Protoplastos/metabolismo , Transfección/métodos , Ascomicetos/genética , Ascomicetos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Proteínas Recombinantes de Fusión/genética , Simbiosis/genética
5.
Plant Methods ; 20(1): 22, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310270

RESUMEN

BACKGROUND: The phenotypic traits of leaves are the direct reflection of the agronomic traits in the growth process of leafy vegetables, which plays a vital role in the selection of high-quality leafy vegetable varieties. The current image-based phenotypic traits extraction research mainly focuses on the morphological and structural traits of plants or leaves, and there are few studies on the phenotypes of physiological traits of leaves. The current research has developed a deep learning model aimed at predicting the total chlorophyll of greenhouse lettuce directly from the full spectrum of hyperspectral images. RESULTS: A CNN-based one-dimensional deep learning model with spectral attention module was utilized for the estimate of the total chlorophyll of greenhouse lettuce from the full spectrum of hyperspectral images. Experimental results demonstrate that the deep neural network with spectral attention module outperformed the existing standard approaches, including partial least squares regression (PLSR) and random forest (RF), with an average R2 of 0.746 and an average RMSE of 2.018. CONCLUSIONS: This study unveils the capability of leveraging deep attention networks and hyperspectral imaging for estimating lettuce chlorophyll levels. This approach offers a convenient, non-destructive, and effective estimation method for the automatic monitoring and production management of leafy vegetables.

6.
Front Plant Sci ; 14: 1165552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332711

RESUMEN

In recent years, rice seedling raising factories have gradually been promoted in China. The seedlings bred in the factory need to be selected manually and then transplanted to the field. Growth-related traits such as height and biomass are important indicators for quantifying the growth of rice seedlings. Nowadays, the development of image-based plant phenotyping has received increasing attention, however, there is still room for improvement in plant phenotyping methods to meet the demand for rapid, robust and low-cost extraction of phenotypic measurements from images in environmentally-controlled plant factories. In this study, a method based on convolutional neural networks (CNNs) and digital images was applied to estimate the growth of rice seedlings in a controlled environment. Specifically, an end-to-end framework consisting of hybrid CNNs took color images, scaling factor and image acquisition distance as input and directly predicted the shoot height (SH) and shoot fresh weight (SFW) after image segmentation. The results on the rice seedlings dataset collected by different optical sensors demonstrated that the proposed model outperformed compared random forest (RF) and regression CNN models (RCNN). The model achieved R2 values of 0.980 and 0.717, and normalized root mean square error (NRMSE) values of 2.64% and 17.23%, respectively. The hybrid CNNs method can learn the relationship between digital images and seedling growth traits, promising to provide a convenient and flexible estimation tool for the non-destructive monitoring of seedling growth in controlled environments.

7.
Integr Comp Biol ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37994686

RESUMEN

Coral reef community exhibit high species diversity and a broad range of biological relationships including widespread symbiosis and complex food utilization patterns. In our study, we investigated the symbiotic relationship between the commonly crinoid host Comaster schlegelii and its ophiuroid obligatory symbiont Gymnolophus obscura. Using a combination of fatty acid biomarkers and stable isotopic compositions, we explored differences in their organic matter utilization strategies and nutritional relationships. The result of stable isotopes revealed that G. obscura had higher δ15N values than its crinoid host. Particulate organic matter and phytoplankton were identified as the primary food sources for both species, however C. schlegelii showed a higher proportional contribution from benthic microalgae. Fatty acid markers showed that C. schlegelii was more dependent on benthic microalgae such as diatoms, and less on debritic organic matter and bacteria than G. obscura. Elevated δ15N values of G. obscura and similar food source contribution rates between the host and symbiont suggest that ophiuroid feeds on materials filtered by crinoids and have similar diet to the host. Our results provide insights into the symbiotic patterns of crinoids and ophiuroids, while also supplying foundational data on how symbiotic reef species select organic matter utilization strategies to adapt to their environment.

8.
J Med Chem ; 66(23): 16201-16221, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37990878

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1) is an important negative regulator in T-cell receptor signaling and as a promising key target for immunotherapy. Herein, based on the reported HPK1 inhibitor 2 featuring an isofuranone component, a structural optimization approach was conducted leading to several series of derivatives characterized by containing an isoindoline structural motif. Compound 49 was identified as a new potent HPK1 inhibitor with an IC50 value of 0.9 nM, more potent than compound 2 (5.5 nM). It also has an improved IV profile in rats and enhanced aqueous solubility. It effectively inhibited pSLP76 and reinvigorated T-cell receptor (TCR) signaling, promoting T-cell function and cytokine production both in naïve and antigen-specific T cells. Furthermore, compound 49 reversed the inhibition on T-cell activity mediated by classic immunosuppressive factors in the tumor microenvironment (TME). In the murine CT-26 tumor model, this compound reinvigorated the T cell and synergistically enhanced the antitumor efficacy of anti-PD1 at a well-tolerant dosage.


Asunto(s)
Transducción de Señal , Linfocitos T , Ratones , Ratas , Animales , Linfocitos T/metabolismo , Fosforilación , Unión Proteica , Receptores de Antígenos de Linfocitos T
9.
Signal Transduct Target Ther ; 8(1): 185, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37183231

RESUMEN

Genomic MET amplification and exon 14 skipping are currently clinically recognized biomarkers for stratifying subsets of non-small cell lung cancer (NSCLC) patients according to the predicted response to c-Met inhibitors (c-Metis), yet the overall clinical benefit of this strategy is quite limited. Notably, c-Met protein overexpression, which occurs in approximately 20-25% of NSCLC patients, has not yet been clearly defined as a clinically useful biomarker. An optimized strategy for accurately classifying patients with c-Met overexpression for decision-making regarding c-Meti treatment is lacking. Herein, we found that SYK regulates the plasticity of cells in an epithelial state and is associated with their sensitivity to c-Metis both in vitro and in vivo in PDX models with c-Met overexpression regardless of MET gene status. Furthermore, TGF-ß1 treatment resulted in SYK transcriptional downregulation, increased Sp1-mediated transcription of FRA1, and restored the mesenchymal state, which conferred resistance to c-Metis. Clinically, a subpopulation of NSCLC patients with c-Met overexpression coupled with SYK overexpression exhibited a high response rate of 73.3% and longer progression-free survival with c-Meti treatment than other patients. SYK negativity coupled with TGF-ß1 positivity conferred de novo and acquired resistance. In summary, SYK regulates cell plasticity toward a therapy-sensitive epithelial cell state. Furthermore, our findings showed that SYK overexpression can aid in precisely stratifying NSCLC patients with c-Met overexpression regardless of MET alterations and expand the population predicted to benefit from c-Met-targeted therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Crecimiento Transformador beta1 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Células Epiteliales/metabolismo , Quinasa Syk/genética
10.
Front Microbiol ; 13: 1050807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439838

RESUMEN

The recent surge in demand for natural preservatives has ushered in a new era of research into novel bacteriocins capable of effectively combating food-borne infections. In this study, the bacteriocin from Lacticaseibacillus rhamnosus ZFM216, which has a molecular mass of 11851.9 Da, was purified using macroporous resin, gel chromatography, and reversed-phase high performance liquid chromatography. This bacteriocin could inhibit both Gram-positive and Gram-negative bacteria. It had a strong inhibitory effect on Staphylococcus aureus D48 with minimum inhibitory concentration values of 1.75 µM. Bacteriocin ZFM216 was heat stable and showed pH stability under weakly acidic conditions. It was sensitive to pepsin, proteinase K and trypsin. Electron microscopy results showed that when treated with bacteriocin ZFM216, S. aureus D48 was severely deformed, the cell structure was obviously changed, and the intracellular electrolyte leaked to the outside of the cell. Bacteriocin ZFM216 caused the ATP level of the indicator to decrease, the conductivity to sharply increase, and the transmembrane potential difference (ΔΨ) to instantaneously decrease. This research formed the basis for further development and utilization of bacteriocin ZFM216 which has potential in the food industry.

11.
J Inflamm Res ; 15: 3613-3630, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769128

RESUMEN

Background: Allergic rhinitis (AR) is a nasal inflammatory disease resulting from a complex interplay between genetic and environmental factors. The association between Toll-like receptor (TLR) signaling pathway and environmental factors in AR pathogenesis remains to be explored. This study aims to assess the genetic association of AR with single nucleotide polymorphisms (SNPs) in TLR signaling pathway, and investigate the roles of gene-gene and gene-environment interactions in AR. Methods: A total of 452 AR patients and 495 healthy controls from eastern China were enrolled in this hospital-based case-control study. We evaluated putatively functional genetic polymorphisms in TLR2, TLR4 and CD14 genes for their association with susceptibility to AR and related clinical phenotypes. Interactions between environmental factors (such as traffic pollution, residence, pet keeping) and polymorphisms with AR were examined using logistic regression. Models were stratified by genotype and interaction terms, and tested for the significance of gene-gene and gene-environment interactions. Results: In the single-locus analysis, two SNPs in CD14, rs2563298 (A/C) and rs2569191 (C/T) were associated with a significantly decreased risk of AR. Compared with the GG genotype, the GT and GT/TT genotypes of TLR2 rs7656411 (G/T) were associated with a significantly increased risk of AR. Gene-gene interactions (eg, TLR2 rs7656411, TLR4 rs1927914, and CD14 rs2563298) was associated with AR. Gene-environment interactions (eg, TLR4 or CD14 polymorphisms and certain environmental exposures) were found in AR cases, but they were not significant after Bonferroni correction. Conclusion: The genetic polymorphisms of TLR2 and CD14 and gene-gene interactions in TLR signaling pathway were associated with susceptibility to AR in this Han Chinese population. However, the present results were limited to support the association between gene-environment interactions and AR.

12.
Front Microbiol ; 13: 845104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359723

RESUMEN

Wild rice (Oryza granulata) is a natural resource pool containing abundant unknown endophytic fungi species. There are few reports on the endophytic fungi in wild rice. Here, one isolate recovered from wild rice roots was identified as a new species Pseudophialophora oryzae sp. nov based on the molecular phylogeny and morphological characteristics. Fluorescent protein-expressing P. oryzae was used to monitor the fungal colonization pattern. Hyphae invaded the epidermis to the inner cortex but not into the root stele. The inoculation of P. oryzae promoted the rice growth, with the growth parameters of chlorophyll content, shoot height, root length, fresh shoot weight, fresh root weight and dry weight increasing by 24.10, 35.32, 19.35, 90.00, 33.3, and 79.17%, respectively. P. oryzae induced up-regulation of nitrate transporter OsPTR9 and potassium transporter OsHAK16 by 7.28 ± 0.84 and 2.57 ± 0.80 folds, promoting nitrogen and potassium elements absorption. In addition, P. oryzae also conferred a systemic resistance against rice blast, showing a 72.65 and 75.63% control rate in sterile plates and potting conditions. This systemic resistance was mediated by the strongly up-regulated expression of resistance-related genes NAC, OsSAUR2, OsWRKY71, EL5, and PR1α. Since P. oryzae can promote rice growth, biomass and induce systemic disease resistance, it can be further developed as a new biogenic agent for agricultural production, providing a new approach for biocontrol of rice blast.

13.
Methods Mol Biol ; 2356: 199-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34236688

RESUMEN

In nature, plants have evolved a myriad of preformed and induced defenses to protect themselves from microbes. Upon microbial infection, the recognition of the microbe-associated molecular patterns (MAMPs) by the pattern recognition receptors (PRRs) triggers the first stage of defense response (Dodds and Rathjen, Nat Rev Genet 11:539-548, 2010). However, in order to develop microbial delivery, effectors target PRRs for deregulating immune responses and facilitating host colonization (Thomma et al., Plant Cell 23:4-15, 2011). Here, we contribute a protocol for the screening system of Magnaporthe oryzae effectors and construct a fluorescent system to trace secretory proteins in the sheath infection samples. Using the tobacco rattle virus (TRV) system, the proteins including LysM, Chitin, Cutinase, and CFEM domains were selected and divided into two kinds according to the results of cell death induced or inhibited test in Nicotiana benthamiana. Then, candidate effectors can be deleted or overexpressed in M. oryzae. The barley or rice infection with M. oryzae, rice leaf sheath inoculation, and subcellular localization during infection can be performed to explore the functions of these effectors.


Asunto(s)
Magnaporthe , Oryza , Animales , Ascomicetos , Enfermedades de las Plantas , Síndrome Respiratorio y de la Reproducción Porcina , Porcinos
14.
Front Nutr ; 8: 710862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368212

RESUMEN

Bacteriocins are bioactive antimicrobial peptides synthesized in the ribosome of numerous bacteria and released extracellularly. Pentocin ZFM94 produced by Lactobacillus pentosus (L. pentosus) ZFM94, isolated from infant feces with strong antibacterial activity, was purified by ammonium sulfate precipitation, dextran gel chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of the purified bacteriocin was 3,547.74 Da determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pentocin ZFM94 exhibited broad-spectrum antimicrobial activity against tested Gram-positive and Gram-negative bacteria, and the minimal inhibitory concentrations (MICs) of Micrococcus luteus (M. luteus) 10,209, Staphylococcus aureus (S. aureus) D48, and Escherichia coli (E. coli) DH5α were 1.75, 2.00, and 2.50 µm, respectively. Pentocin ZFM94 was heat-stable (30 min at 80°C) and showed inhibitory activity over a wide pH range (5.00-7.00). It could be degraded by trypsin and pepsin, but not by amylase, lysozyme, lipase, and ribonuclease A. Fluorescence leakage assay showed that pentocin ZFM94 induced disruption of the cell membrane and caused leakage of cellular content. Furthermore, lipid II was not an antibacterial target of pentocin ZFM94. This study laid the foundation for further development and utilization of L. pentosus ZFM94 and its bacteriocin.

15.
J Fungi (Basel) ; 7(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34436214

RESUMEN

Increasing evidence suggests that the endophytic fungus Piriformospora indica helps plants overcome various abiotic stresses, especially heavy metals. However, the mechanism of heavy metal tolerance has not yet been elucidated. Here, the role of P. indica in alleviating cadmium (Cd) toxicities in tobacco was investigated. It was found that P. indica improved Cd tolerance to tobacco, increasing Cd accumulation in roots but decreasing Cd accumulation in leaves. The colonization of P. indica altered the subcellular repartition of Cd, increasing the Cd proportion in cell walls while reducing the Cd proportion in membrane/organelle and soluble fractions. During Cd stress, P. indica significantly enhanced the peroxidase (POD) activity and glutathione (GSH) content in tobacco. The spatial distribution of GSH was further visualized by Raman spectroscopy, showing that GSH was distributed in the cortex of P. indica-inoculated roots while in the epidermis of the control roots. A LC-MS/MS-based label-free quantitative technique evaluated the differential proteomics of P. indica treatment vs. control plants under Cd stress. The expressions of peroxidase, glutathione synthase, and photosynthesis-related proteins were significantly upregulated. This study provided extensive evidence for how P. indica enhances Cd tolerance in tobacco at physiological, cytological, and protein levels.

16.
Microbiol Res ; 248: 126749, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33744788

RESUMEN

The fungal cell wall plays an essential role in maintaining cellular integrity and facing complex and changing environmental conditions. Whether a fungus successfully invades a host depends on whether it evades the plant's innate immune system, which recognizes the conserved components of the fungal cell wall, such as chitin. Fungi developed infection-related changes in cell wall composition in co-evolution with nature to solve this problem. One of the changes is the deacetylation of chitin by chitin deacetylase (CDA) to produce a polysaccharide that influences the infection of pathogenic fungi. The present study revealed the functions of PoCda7, a chitin deacetylase in Pyricularia oryzae. Phenotype analysis revealed that the knockout mutant of ΔPocda7 had no significant effect on fungal morphogenic development, including conidiation, germination, appressorial formation and cell wall of conidium and hyphae but was sensitive to reactive oxygen species. Glycerols are necessary to generate sufficient turgor in appressoria for invading the host surface. As a result of the decreased appressorium turgor pressure and decreased appressorium-mediated invasion, the fungal virulence of ΔPocda7 was significantly reduced in host plants. PoCda7 inhibited the cell death of leaves in Nicotiana benthamiana. Additionally, the expression of PoCDA7 was repressed in the early stage of infection. Subcellular localization experiments showed that PoCda7 was localized in the cell wall, and its fluorescence transferred to the EIHM and BIC when the rice blast fungus infected the rice leaf sheath, which was referred to as a candidate apoplastic effector in P. oryzae.


Asunto(s)
Amidohidrolasas/metabolismo , Ascomicetos/enzimología , Ascomicetos/patogenicidad , Proteínas Fúngicas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Amidohidrolasas/genética , Secuencia de Aminoácidos , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Pared Celular/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Oryza/metabolismo , Alineación de Secuencia , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
17.
Acta Pharm Sin B ; 11(3): 781-794, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33777682

RESUMEN

Fibroblast growth factor receptors (FGFRs) have emerged as promising targets for anticancer therapy. In this study, we synthesized and evaluated the biological activity of 66 pyrazolo[3,4-d]pyridazinone derivatives. Kinase inhibition, cell proliferation, and whole blood stability assays were used to evaluate their activity on FGFR, allowing us to explore structure-activity relationships and thus to gain understanding of the structural requirements to modulate covalent inhibitors' selectivity and reactivity. Among them, compound 10h exhibited potent enzymatic activity against FGFR and remarkably inhibited proliferation of various cancer cells associated with FGFR dysregulation, and suppressed FGFR signaling pathway in cancer cells by the immunoblot analysis. Moreover, 10h displayed highly potent antitumor efficacy (TGI = 91.6%, at a dose of 50 mg/kg) in the FGFR1-amplified NCI-H1581 xenograft model.

18.
Clin Transl Allergy ; 11(10): e12077, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34962722

RESUMEN

BACKGROUND: House dust mite (HDM)-induced allergic rhinitis (AR) is a highly prevalent disease with bothersome symptoms. Genetic variants of the Hippo pathway genes play a critical role in the respiratory disease. However, no study has reported associations between variants of the Hippo pathway genes and HDM-induced AR risk. METHODS: Forty-three key genes in the Hippo pathway were selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway database, and previous reported studies. A case-control study of 222 cases and 237 controls was performed to assess the associations between 121 genetic variants in these genes and HDM-induced AR risk. DNeasy Blood & Tissues Kits were used for extracting genomic DNA from the venous blood and Infinium Asian Screening Array BeadChips for performing genotyping. A logistic regression model was applied to evaluate the effects of variants on HDM-induced AR risk. The false discovery rate (FDR) method was utilized to correct for multiple testing. The receiver operating characteristic (ROC) curve was plotted to obtain the cut-off value of total IgE for the diagnosis of HDM-induced AR. Histone modification and transcription factor binding sites were visualized by UCSC genome browser. Moreover, expression qualitative trait loci (eQTL) analysis was obtained from Genotype-Tissue Expression (GTEx) database. RESULTS: We found that rs754466 in DLG5 was significantly associated with a decreased HDM-induced AR risk after FDR correction (adjusted odds ratio [OR] = 0.52, 95% confidence interval [CI] = 0.36-0.74, p = 3.25 × 10-4 , PFDR  = 3.93 × 10-2 ). The rs754466 A allele reduced the risk of HDM-induced AR in the subgroup of moderate/severe total nasal symptom score (TNSS). Furthermore, rs754466 was associated with a high mRNA expression of DLG5. Additionally, histone modification and transcription factor binding sites were rich in the region containing rs754466. CONCLUSION: Our findings indicated that rs754466 in DLG5 decreased the susceptibility to HDM-induced AR.

19.
J Hazard Mater ; 419: 126435, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34323726

RESUMEN

Dark septate endophytes (DSEs) are the typical representatives of root endophytic fungi in heavy metal (HM)-contaminated environments. However, little is known about their roles in the HMs tolerance of hosts and the underlying mechanism. Here, we investigated the biological roles and molecular mechanisms of a DSE strain Falciphora oryzae in alleviating cadmium (Cd) toxicities in rice. It was found that F. oryzae possessed a capacity of accumulating Cd in its vacuoles and chlamydospores. During symbiosis, F. oryzae conferred improved Cd tolerance to rice, decreasing Cd accumulation in roots and translocation to shoots. F. oryzae alleviated Cd toxicity to rice by sequestering Cd in its vacuoles. Further application of F. oryzae as fertilizer in the field could reduce Cd content in rice grains. We identified a SNARE Syntaxin 1 gene through proteomics, which participated in Cd tolerance of F. oryzae by regulating chlamydospore formation and vacuole enlargement. This study provided novel insights into how the DSEs and their host plants combat Cd stress.


Asunto(s)
Ascomicetos , Oryza , Contaminantes del Suelo , Cadmio/toxicidad , Endófitos/genética , Raíces de Plantas/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA