RESUMEN
The use of highly tensile and self-healing conductive composites has gained considerable interest due to their wide range of applications in healthcare, sensors, and robotics. Epoxidized natural rubber (ENR), known for its ability to undergo highly reversible deformation, can be utilized in strain sensors to effectively transmit a broader range of signal changes. In this study, we introduced a self-healing ENR composite specifically designed for high-strain sensors. The rubber molecular chains were enhanced with hydrogen bonds and metal coordination bonds, allowing the matrix material to autonomously repair itself through these interactions. Following a repair period of 12 h at 45 °C, the composites achieve a repair efficiency exceeding 90%. Furthermore, by incorporating conductive fillers into the matrix using multistage layering, the resulting composite has good electrical conductivity, thermal conductivity, and hydrophobicity. In addition, this composite presents good sensitivity even at large strain (strain in the range of 50-200%, GF = 7.65). In conclusion, this self-healing nanocomposite, characterized by its high strain sensitivity, holds immense potential for various strain sensor applications.
RESUMEN
Currently, the excessive application of fertilizers and the random discharge of waste water, waste gas, and residues have led to more and more serious soil pollution problems. Zeolite is the most promising material for preparing a green and environmentally friendly soil conditioner. Herein, the carbon nanotubes/polydopamine/ZSM-5 composite soil conditioner was prepared by a facile two-step method, and it was used to release fulvic acid and adsorb methylene blue to improve the environment. The cumulative release rate of the composite soil conditioner was 52% within 430 h for fulvic acid, which had a good sustained release effect and could be sustained-released in different acid-based surroundings. In addition, it showed a good adsorption capacity of methylene blue, and it is about 80.02 mg/g which was about six times higher than that of ZSM-5. It was beneficial for the adsorption of methylene blue in a neutral environment. Finally, it could promote the growth of brassica chinensis and maize, and the promotion effect was 60 and 35%, respectively. Therefore, the carbon nanotubes/polydopamine/ZSM-5 composite soil conditioner is a green and efficient material, which provides a new strategy to solve the problem of soil pollution.
Asunto(s)
Nanotubos de Carbono , Adsorción , Preparaciones de Acción Retardada , Indoles , Azul de Metileno/química , Polímeros , Suelo/químicaRESUMEN
The water body environment is related to ecological and human health. Adsorption is an effective means to remove pollutants from water bodies. Currently, the common adsorbents suffer from disadvantages such as structural instability and poor adsorption performance under acidic conditions, which not only affect the adsorption efficiency but also cause secondary pollution of water bodies. In this study, a novel aminated multiwalled carbon nanotube-doped flower-like nanocomposite was designed, where the anionic or neutral groups were protonated under acidic conditions, and it displayed a higher adsorption capacity for dyes by ion exchange, represented by methylene blue (MB) and rhodamine B (RB). WSe2 in the composite increases its adsorption sites. The adsorption efficiency of pollutants in acidic wastewater was enhanced while avoiding secondary contamination. The synthesized composites showed maximum adsorptions of 27.55 and 27.47 mg/g for MB and RB, respectively. The current work offers a novel approach to treating acidic wastewater.
Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Colorantes/química , Humanos , Cinética , Fenómenos Magnéticos , Azul de Metileno/química , Nanotubos de Carbono/química , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Real-time detection of various parts of the human body is crucial in medical monitoring and human-machine technology. However, existing self-healing flexible sensing materials are limited in real-life applications due to the weak stability of conductive networks and difficulty in balancing stretchability and self-healing properties. Therefore, the development of wearable flexible sensors with high sensitivity and fast response with self-healing properties is of great interest. In this paper, a novel multilevel self-healing polydimethylsiloxane (PDMS) material is proposed for enhanced sensing capabilities. The PDMS was designed to have multiple bonding mechanisms including hydrogen bonding, coordination bonding, disulfide bonding, and local covalent bonding. To further enhance its sensing properties, modified carbon nanotubes (CNTs) were embedded within the PDMS matrix using a solvent etching technique. This created a sandwich-type sensing material with improved stability and sensitivity. This self-healing flexible sensing material (self-healing efficiency = 70.1% at 80 °C and 6 h) has good mechanical properties (stretchability ≈413%, tensile strength ≈0.69 MPa), thermal conductivity, and electrical conductivity. It has ultrahigh sensitivity, which makes it possible to be manufactured as a multifunctional flexible sensor.
RESUMEN
Self-healable flexible sensing materials are extensively investigated for their potential use in human motion detection, healthcare monitoring, and other fields. However, the existing self-healable flexible sensing materials have limited their application in real life due to the weak stability of the conductive network and the difficulty in balancing stretchability and self-healing performances. In this paper, a flexible sensor with skin-like properties was prepared by composing a polymer composite hydrogel with a multiple network structure consisting of polyaniline, polyvinyl alcohol, chitosan, and phytic acid. The composite hydrogel was tested and proved to own high mechanical properties (stretchability ≈ 565%, strength ≈ 1.4 MPa), good electrical conductivity (0.214 S cm-1), excellent self-healing properties (>99% healing efficiency in a 4 h healing period), and antibacterial properties. It had high sensitivity and a wide sensing range for strain and pressure, making it possible to manufacture multifunctional flexible sensors with comprehensive performance exceeding that of most flexible sensing materials. Notably, this polymer composite hydrogel can be manufactured in a large area and at a low cost, which is beneficial for its further application in many fields.