Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(9): 2891-2911, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36723875

RESUMEN

Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.


Asunto(s)
Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/genética , Plantas , Hojas de la Planta/fisiología , Enfermedades de las Plantas/microbiología
2.
Environ Sci Pollut Res Int ; 30(47): 103983-103995, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37697194

RESUMEN

Glyphosate is one of the most widely used herbicides in the world. In addition to its herbicidal effect, glyphosate is a chelating agent that can form complexes with trace elements. Yet, agricultural soils can be contaminated with both organic and mineral substances, questioning the possible influence of glyphosate application on the trace element mobility. In this context, we specifically studied the extractability of trace elements in uncontaminated and metal-contaminated agricultural soils by adding glyphosate, formulated glyphosate, and aminomethylphosphonic acid (AMPA, a degradation product of glyphosate) in batch experiments from 0 to 100 mg L-1. Results showed that, on average, glyphosate enhanced the extractability of the elements considered (e.g., As, Cd, Cu, Pb, and Zn) at 20 and 100 mg L-1. Surprisingly, the uncontaminated soil highlighted the highest influence of glyphosate compared to the contaminated ones, likely resulting from a higher natural element extractability in the contaminated soils. Although formulated glyphosate presented an overall higher impact than unformulated glyphosate, it was evidenced that AMPA showed lower influence meaning that glyphosate degradation is beneficial to limit deleterious effects.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Oligoelementos , Oligoelementos/análisis , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Suelo , Contaminantes del Suelo/análisis , Herbicidas/análisis , Glifosato
3.
Aquat Toxicol ; 231: 105676, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341509

RESUMEN

The present study aimed at investigating interactive effects between dietary lipids and both short- and long-term exposures to a low, environmentally realistic, cadmium (Cd) concentration. Juvenile rainbow trout were fed four isolipidic diets (31.7 g/kg) enriched in either linoleic acid (LA, 18:2n-6), alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3). From the 4th week of this 10-week experiment, the lipid level of the diet was increased (120.0 g/kg) and half of the fish fed each diet were aqueously exposed to Cd (0.3 µg/L) while the other half were not exposed to Cd (control). Fish were sampled and their liver was harvested for fatty acid profile, hepatic Cd and calcium concentrations, total glutathione level and gene expression assessment, either (i) after 4 weeks of feeding and 24 h of Cd contamination (day 29) (short-term Cd exposure) or (ii) after 10 weeks of feeding and 6 weeks of Cd contamination (day 70) (long-term Cd exposure). We found that both dietary lipids and Cd exposure influenced fatty acid homeostasis and metabolism. The hepatic fatty acid profile mostly reflected that of the diet (e.g. n-3/n-6 ratio) with some differences, including selective retention of specific long chain polyunsaturated fatty acids (LC-PUFAs) like DHA and active biotransformation of dietary LA and ALA into LC-PUFAs. Cd effects on hepatic fatty acid profiles were influenced by the duration of the exposure and the nutritional status of the fish. The effects of diet and Cd exposure on the fatty acid profiles were only sparsely explained by variation of the expression pattern of genes involved in fatty acid metabolism. The biological responses to Cd were also influenced by dietary lipids. Fish fed the ALA-enriched diet seemed to be the least affected by the Cd exposure, as they showed a higher detoxifying ability against Cd with an early upregulation of protective metallothionein a (MTa) and apoptosis regulator BCL2-Like1 (BCLx) genes, an increased long-term phospholipid synthesis and turnover and fatty acid bioconversion efficiency, as well as a lower long-term accumulation of Cd in their liver. In contrast, fish fed the EPA-enriched diet seemed to be the most sensitive to a long-term Cd exposure, with an impaired growth performance and a decreased antioxidant capacity (lower glutathione level). Our results highlight that low, environmentally realistic aqueous concentrations of Cd can affect biological response in fish and that these effects are influenced by the dietary fatty acid composition.


Asunto(s)
Cadmio/toxicidad , Dieta , Exposición a Riesgos Ambientales , Ácidos Grasos/metabolismo , Hígado/metabolismo , Oncorhynchus mykiss/metabolismo , Estrés Fisiológico , Animales , Calcio/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Docosahexaenoicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad
4.
Foods ; 10(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069647

RESUMEN

Long-term feeding trials examining the incorporation of conjugated linolenic acids (CLnA) into the diet of laying hens are lacking. In the present study, we compared two diets in sixty-six red Sex-Link hens (33 hens/treatment), fed for 26 weeks. The control diet was high in oleic acid, while the test diet was high in α-linolenic acid (ALA) and punicic acid (PunA). No significant differences were observed between treatments for hens' performance, egg weight and yolk weight. In contrast, dietary ALA and PunA resulted in a significant increase in n-3 PUFA, rumenic acid (RmA) and PunA contents in egg yolk, as well as in the liver, heart, muscle and adipose tissue of the hens. Other conjugated dienes resulting from the metabolism of PunA or RmA also accumulated in the egg yolk and tissues. Unlike DHA, which was exclusively distributed in phospholipids, ALA, RmA and PunA were preferably distributed in triglycerides.

5.
Chemosphere ; 233: 954-965, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31340423

RESUMEN

Heavy metals such as cadmium and zinc constitute major pollutants in coastal areas and frequently accumulate in salt marshes. The wetland halophyte plant species Kosteletzkya pentacarpos is a promising species for phytostabilization of contaminated areas. In order to assess the role of the antisenescing phytohormone cytokinin in heavy metal resistance in this species, seedlings were exposed for two weeks to Cd (10 µM), Zn (100 µM) or Cd + Zn (10 µM + 100 µM) in the presence or absence of 50 mM NaCl and half of the plants were sprayed every two days with the cytokinin trans-zeatine riboside (10 µM). Zinc reduced the endogenous cytokinin concentration. Exogenous cytokinin increased plant growth, stomatal conductance, net photosynthesis and total ascorbate and reduced oxidative stress estimated by malondialdehyde in Zn-treated plants maintained in the absence of NaCl. Heavy metal induced an increase in the senescing hormone ethylene which was reduced by cytokinin treatment. Plants exposed to the mixed treatment (Cd + Zn) exhibited a specific hormonal status in relation to accumulation of abscisic acid and depletion of salicylic acid. Non-protein thiols (glutathione and phytochelatins) accumulated in response to Cd and Cd + Zn. It is concluded that toxic doses of Cd and Zn have different impacts on the plant behavior and that the simultaneous presence of the two elements induces a specific physiological constraint at the plant level. Salinity helps the plant to cope with heavy metal toxicities and the plant hormone cytokinin assumes key function in Zn resistance but its efficiency is lower in the presence of NaCl.


Asunto(s)
Cadmio/toxicidad , Citocininas/metabolismo , Hibiscus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Cloruro de Sodio/farmacología , Zinc/toxicidad , Ácido Abscísico/análisis , Glutatión/metabolismo , Hibiscus/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Fitoquelatinas/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Ácido Salicílico/análisis , Salinidad , Plantones/fisiología , Contaminantes Químicos del Agua/toxicidad , Humedales
6.
Environ Sci Pollut Res Int ; 25(18): 17444-17456, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29656355

RESUMEN

Data regarding NaCl impact on halophyte plant species exposed to a polymetallic contamination remain scarce. Seedlings of the salt marsh species Kosteletzkya pentacarpos were simultaneously exposed to cadmium (10 µM) and zinc (100 µM) in the absence or presence of 50 mM NaCl. Heavy metal exposure reduced plant growth and increased Cd and Zn concentrations in all organs. Cd and Zn accumulation reduced net photosynthesis in relation to stomatal closure, decreased in chlorophyll concentration and alteration in chlorophyll fluorescence-related parameters. Salinity reduced Cd and Zn bioaccumulation and translocation, with a higher impact on Cd than Zn. It mitigated the deleterious impact of heavy metals on photosynthetic parameters. NaCl reduced the heavy metal-induced oxidative stress assessed by malondialdehyde, carbonyl, and H2O2 concentration. Subcellular distribution revealed that Cd mainly accumulated in the cell walls, but NaCl increased it in the cytosol fraction in the leaf and in the metal-rich granule fraction in the roots. It had no impact on Zn subcellular distribution. The additional NaCl contributed to a higher sequestration of Cd on phytochelatins and stimulated glutathione synthesis. The positive impact of NaCl on K. pentacarpos response to polymetallic pollution made this species a promising candidate for revegetation of heavy metal-contaminated salt areas.


Asunto(s)
Peróxido de Hidrógeno/química , Malvaceae/química , Metales Pesados/química , Plantas Tolerantes a la Sal/metabolismo , Plantones/metabolismo , Zinc/química , Cadmio , Clorofila/metabolismo , Fotosíntesis , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Salinidad , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA