Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Purinergic Signal ; 15(4): 465-476, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31520282

RESUMEN

Glial cells are involved in multiple cerebral functions that profoundly influence brain tissue viability during ischemia, and astrocytes are the main source of extracellular purines as adenosine and guanosine. The endogenous guanine-based nucleoside guanosine is a neuromodulator implicated in important processes in the brain, such as modulation of glutamatergic transmission and protection against oxidative and inflammatory damage. We evaluated if the neuroprotective effect of guanosine is also observed in cultured cortical astrocytes subjected to oxygen/glucose deprivation (OGD) and reoxygenation. We also assessed the involvement of A1 and A2A adenosine receptors and phosphatidylinositol-3 kinase (PI3K), MAPK, and protein kinase C (PKC) signaling pathways on the guanosine effects. OGD/reoxygenation decreased cell viability and glutamate uptake and increased reactive oxygen species (ROS) production in cultured astrocytes. Guanosine treatment prevented these OGD-induced damaging effects. Dipropyl-cyclopentyl-xanthine (an adenosine A1 receptor antagonist) and 4-[2-[[6-amino-9-(N-ethyl-ß-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride (an adenosine A2A receptor agonist) abolished guanosine-induced protective effects on ROS production, glutamate uptake, and cell viability. The PI3K pathway inhibitor 2-morpholin-4-yl-8-phenylchromen-4-one, the extracellular-signal regulated kinase kinase (MEK) inhibitor 2'-amino-3'-methoxyflavone, or the PKC inhibitor chelerythrine abolished the guanosine effect of preventing OGD-induced cells viability reduction. PI3K inhibition partially prevented the guanosine effect of reducing ROS production, whereas MEK and PKC inhibitions prevented the guanosine effect of restoring glutamate uptake. The total immunocontent of the main astrocytic glutamate transporter glutamate transporter-1 (GLT-1) was not altered by OGD and guanosine. However, MEK and PKC inhibitions also abolished the guanosine effect of increasing cell-surface expression of GLT-1 in astrocytes subjected to OGD. Then, guanosine prevents oxidative damage and stimulates astrocytic glutamate uptake during ischemic events via adenosine A1 and A2A receptors and modulation of survival signaling pathways, contributing to microenvironment homeostasis that culminates in neuroprotection.


Asunto(s)
Astrocitos/efectos de los fármacos , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Guanosina/farmacología , Oxígeno/metabolismo , Animales , Astrocitos/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipoxia/metabolismo , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P1/efectos de los fármacos , Receptores Purinérgicos P1/metabolismo
2.
Purinergic Signal ; 15(4): 439-450, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31478180

RESUMEN

The guanine-based purines (GBPs) have essential extracellular functions such as modulation of glutamatergic transmission and trophic effects on neurons and astrocytes. We previously showed that GBPs, such as guanosine-5'-monophosphate (GMP) or guanosine (GUO), promote the reorganization of extracellular matrix proteins in astrocytes, and increase the number of neurons in a neuron-astrocyte co-culture protocol. To delineate the molecular basis underlying these effects, we isolated cerebellar neurons in culture and treated them with a conditioned medium derived from astrocytes previously exposed to GUO or GMP (GBPs-ACM) or, directly, with GUO or GMP. Agreeing with the previous studies, there was an increase in the number of ß-tubulin III-positive neurons in both conditions, compared with controls. Interestingly, the increase in the number of neurons in the neuronal cultures treated directly with GUO or GMP was more prominent, suggesting a direct interaction of GBPs on cerebellar neurons. To investigate this issue, we assessed the role of adenosine and glutamate receptors and related intracellular signaling pathways after GUO or GMP treatment. We found an involvement of A2A adenosine receptors, ionotropic glutamate N-methyl-D-aspartate (NMDA), and non-NMDA receptors in the increased number of cerebellar neurons. The signaling pathways extracellular-regulated kinase (ERK), calcium-calmodulin-dependent kinase-II (CaMKII), protein kinase C (PKC), phosphatidilinositol-3'-kinase (PI3-K), and protein kinase A (PKA) are also potentially involved with GMP and GUO effect. Such results suggest that GMP and GUO, and molecules released in GBPs-ACM promote the survival or maturation of primary cerebellar neurons or both via interaction with adenosine and glutamate receptors.


Asunto(s)
Adenosina/metabolismo , Guanosina/metabolismo , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Animales , Astrocitos/metabolismo , Sistema Nervioso Central/metabolismo , Ácido Glutámico/metabolismo , Guanosina Monofosfato/metabolismo , Receptores Purinérgicos P1/metabolismo
3.
Purinergic Signal ; 13(3): 305-318, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28536931

RESUMEN

Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 µM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A1R and A2AR) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.


Asunto(s)
Apoptosis/efectos de los fármacos , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Guanosina/farmacología , Receptores Purinérgicos P1/efectos de los fármacos , Antineoplásicos Alquilantes/farmacología , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dacarbazina/farmacología , Glioma/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Receptores Purinérgicos P1/metabolismo , Temozolomida
4.
J Neural Transm (Vienna) ; 123(3): 339-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747027

RESUMEN

Stress and excessive glutamatergic neurotransmission have been implicated in the pathophysiology of depression. Therefore, this study was aimed at investigating the influence of zinc on depressive-like behavior induced by chronic unpredictable stress (CUS), on alterations in glutamate-induced toxicity and immunocontent of proteins involved in the control of glutamatergic neurotransmission in the hippocampus of mice. Mice were subjected to CUS procedure for 14 days. From the 8th to the 14th day, mice received zinc chloride (ZnCl2) (10 mg/kg) or fluoxetine (10 mg/kg, positive control) once a day by oral route. CUS caused a depressive-like behavior evidenced by the increased immobility time in the tail suspension test (TST), which was prevented by treatment with ZnCl2 or fluoxetine. Ex vivo exposure of hippocampal slices to glutamate (10 mM) resulted in a significant decrease on cell viability; however, neither CUS procedure nor drug treatments altered this reduction. No alterations in the immunocontents of GLT-1 and GFAP or p-Akt were observed in any experimental group. The ratio of p-Akt/AKT was also not altered in any group. However, Akt immunocontent was increased in stressed mice and in animals treated with ZnCl2 (stressed or non-stressed mice) and EAAC1 immunocontent was increased in stressed mice treated with ZnCl2, fluoxetine or vehicle and in non-stressed mice treated with ZnCl2 and fluoxetine. These findings indicate a robust effect of zinc in reversing behavioral alteration induced by CUS in mice, through a possible modulation of the glutamatergic neurotransmission, extending literature data regarding the mechanisms underlying its antidepressant-like action.


Asunto(s)
Antidepresivos/farmacología , Cloruros/farmacología , Depresión , Hipocampo/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Compuestos de Zinc/farmacología , Animales , Conducta Animal/efectos de los fármacos , Western Blotting , Modelos Animales de Enfermedad , Femenino , Fluoxetina/farmacología , Glutamina/metabolismo , Hipocampo/metabolismo , Ratones , Estrés Psicológico/psicología
5.
Purinergic Signal ; 12(4): 707-718, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27613537

RESUMEN

Guanosine, the endogenous guanine nucleoside, prevents cellular death induced by ischemic events and is a promising neuroprotective agent. During an ischemic event, nitric oxide has been reported to either cause or prevent cell death. Our aim was to evaluate the neuroprotective effects of guanosine against oxidative damage in hippocampal slices subjected to an in vitro ischemia model, the oxygen/glucose deprivation (OGD) protocol. We also assessed the participation of nitric oxide synthase (NOS) enzymes activity on the neuroprotection promoted by guanosine. Here, we showed that guanosine prevented the increase in ROS, nitric oxide, and peroxynitrite production induced by OGD. Moreover, guanosine prevented the loss of mitochondrial membrane potential in hippocampal slices subjected to OGD. Guanosine did not present an antioxidant effect per se. The protective effects of guanosine were mimicked by inhibition of neuronal NOS, but not of inducible NOS. The neuroprotective effect of guanosine may involve activation of cellular mechanisms that prevent the increase in nitric oxide production, possibly via neuronal NOS.


Asunto(s)
Guanosina/farmacología , Hipocampo/efectos de los fármacos , Hipoxia/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Glucosa/metabolismo , Hipocampo/metabolismo , Masculino , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Wistar
6.
J Neurochem ; 126(4): 437-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23713463

RESUMEN

Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 µM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti-inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol-3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin-sensitive G-protein-coupled signaling, blockade of adenosine A2A receptors (A2A R), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake.


Asunto(s)
Encefalitis , Guanosina/metabolismo , Hipocampo/inmunología , Hipocampo/metabolismo , Hipoxia Encefálica , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Encefalitis/tratamiento farmacológico , Encefalitis/inmunología , Encefalitis/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Glucosa/farmacología , Ácido Glutámico/farmacocinética , Guanosina/farmacología , Hipocampo/citología , Hipoxia Encefálica/tratamiento farmacológico , Hipoxia Encefálica/inmunología , Hipoxia Encefálica/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Oxígeno/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptor de Adenosina A1/metabolismo , Sinaptotagminas , Tritio
7.
Neurotox Res ; 40(6): 1924-1936, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36441450

RESUMEN

Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols. In PND8, ex vivo analysis of hippocampal and frontal cortex slices evaluated cell viability and susceptibility to in vitro glutamate challenge. In adult rats, behavioral parameters related to anxiety-like behavior, short-term memory, and locomotor activity (PND60-62) and ex vivo analysis of cell viability, membrane permeability, glutamate uptake, and susceptibility to in vitro glutamate challenge in hippocampal and cortical slices from PND65. A single isoflurane (3%, 2 h) exposure at PND7 did not acutely alter cell viability in cortical and hippocampal slices of infant rats (PND8) per se and did not alter slice susceptibility to in vitro glutamate challenge. In rat's adulthood, behavioral analysis revealed that the neonatal isoflurane exposure did not alter anxiety-like behavior and locomotor activity (open field and rotarod tests). However, isoflurane exposure impaired short-term memory evaluated in the novel object recognition task. Ex vivo analysis of brain slices showed isoflurane neonatal exposure selectively decreased cell viability and glutamate uptake in cortical slices, but it did not alter hippocampal slice viability or glutamate uptake (PND65). Isoflurane exposure did not alter in vitro glutamate-induced neurotoxicity to slices, and isoflurane exposure caused no significant long-term damage to cell membranes in hippocampal or cortical slices. These findings indicate that a single neonatal isoflurane exposure did not promote acute damage; however, it reduced cortical, but not hippocampal, slice viability and glutamate uptake in the adulthood. Additionally, behavioral analysis showed neonatal isoflurane exposure induces short-term recognition memory impairment, consolidating that neonatal exposure to volatile anesthetics may lead to behavioral impairment in the adulthood, although it may damage brain regions differentially.


Asunto(s)
Anestésicos por Inhalación , Anestésicos , Isoflurano , Ratas , Animales , Isoflurano/toxicidad , Ácido Glutámico/metabolismo , Memoria a Corto Plazo , Supervivencia Celular , Hipocampo , Lóbulo Frontal/metabolismo , Corteza Cerebral/metabolismo , Anestésicos por Inhalación/toxicidad
8.
J Neurosci Res ; 89(9): 1400-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21671255

RESUMEN

Excitotoxicity and cell death induced by glutamate are involved in many neurodegenerative disorders. We have previously demonstrated that excitotoxicity induced by millimolar concentrations of glutamate in hippocampal slices involves apoptotic features and glutamate-induced glutamate release. Guanosine, an endogenous guanine nucleoside, prevents excitotoxicity by its ability to modulate glutamate transport. In this study, we have evaluated the neuroprotective effect of guanosine against glutamate-induced toxicity in hippocampal slices and the mechanism involved in such an effect. We have found that guanosine (100 µM) was neuroprotective against 1 mM glutamate-induced cell death through the inhibition of glutamate release induced by glutamate. Guanosine also induced the phosphorylation and, thus, activation of protein kinase B (PKB/Akt), a downstream target of phosphatidylinositol-3 kinase (PI3K), as well as phosphorylation of glycogen synthase kinase 3ß, which has been reported to be inactivated by Akt after phosphorylation at Ser9. Glutamate treated hippocampal slices showed increased inducible nitric oxide synthase (iNOS) expression that was prevented by guanosine. Slices preincubated with SNAP (an NO donor), inhibited the protective effect of guanosine. LY294002 (30 µM), a PI3K inhibitor, attenuated guanosine-induced neuroprotection, guanosine prevention of glutamate release, and guanosine-induced GSK3ß(Ser9) phosphorylation but not guanosine reduction of glutamate-induced iNOS expression. Taken together, the results of this study show that guanosine protects hippocampal slices by a mechanism that involves the PI3K/Akt/GSK3ß(Ser9) pathway and prevention of glutamate-induced glutamate release. Furthermore, guanosine also reduces glutamate-induced iNOS by a PI3K/Akt-independent mechanism.


Asunto(s)
Ácido Glutámico/efectos adversos , Guanosina/farmacología , Hipocampo/enzimología , Fármacos Neuroprotectores/farmacología , Neurotoxinas/efectos adversos , Sistemas de Mensajero Secundario/fisiología , Análisis de Varianza , Animales , Muerte Celular/efectos de los fármacos , Glucógeno Sintasa Quinasas/efectos de los fármacos , Glucógeno Sintasa Quinasas/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Técnicas In Vitro , Masculino , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/fisiología , Fosfatidilinositol 3-Quinasa/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/fisiología , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Ratas Wistar , Sistemas de Mensajero Secundario/efectos de los fármacos , Estadísticas no Paramétricas
9.
Mol Neurobiol ; 55(2): 1509-1523, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28181188

RESUMEN

Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 µM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 µM concentrations. TMZ (500 µM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.


Asunto(s)
Atorvastatina/farmacología , Neoplasias Encefálicas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glioma/patología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Antineoplásicos Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Temozolomida/farmacología
10.
Mol Neurobiol ; 55(2): 1580-1589, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28185129

RESUMEN

Folic acid (folate) is a vitamin of the B-complex group crucial for neurological function. Considering that excitotoxicity and cell death induced by glutamate are involved in many disorders, the potential protective effect of folic acid on glutamate-induced cell damage in rat hippocampal slices and the possible intracellular signaling pathway involved in such effect were investigated. The treatment of hippocampal slices with folic acid (100 µM) significantly abrogated glutamate (1 mM)-induced reduction of cell viability measured by MTT reduction assay and inhibited glutamate-induced D-[3H]-aspartate release. To investigate the putative intracellular signaling pathways implicated in the protective effect of folic acid, we used a PI3K inhibitor, LY294002, which abolished the protective effects of folic acid against glutamate-induced cell damage and D-[3H] aspartate release. Moreover, hippocampal slices incubated with folic acid alone for 30 min presented increased phosphorylation of GSK-3ß at Ser9, indicating an inhibition of the activity of this enzyme. Furthermore, folic acid in the presence of glutamate insult in hippocampal slices maintained for an additional period of 6 h in fresh culture medium without glutamate and/or folic acid induced phosphorylation of GSK-3ß and ß-catenin expression. In addition, glutamate-treated hippocampal slices showed increased iNOS expression that was reversed by folic acid. In conclusion, the results of this study show that the protective effect of folic acid against glutamate-induced excitotoxicity may involve the modulation of PI3K/GSK-3ß/ß-catenin pathway and iNOS inhibition.


Asunto(s)
Ácido Fólico/farmacología , Ácido Glutámico/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
11.
Neurotox Res ; 34(3): 649-659, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29968149

RESUMEN

The neonatal exposure to general anesthetics has been associated with neuronal apoptosis and dendritic spines morphologic changes in the developing brain. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated short- and long-term effects of a single ketamine (20 mg/kg, s.c.) neonatal exposure at postnatal day 7 in rats on the hippocampal and frontal cortical cellular viability. Additionally, putative neurochemical alterations and neurobehavioral impairments were evaluated in the adulthood. Ketamine neonatal administration selectively decreased cellular viability in the hippocampus, but not in the frontal cortex, 24 h after the treatment. Interestingly, a single ketamine neonatal exposure prevented the vulnerability to glutamate-induced neurotoxicity in the frontal cortex of adult rats. No short- or long-term damage to cellular membranes, as an indicative of cell death, was observed in hippocampal or cortical slices. However, ketamine induced a long-term increase in hippocampal glutamate uptake. Regarding behavioral analysis, neonatal ketamine exposure did not alter locomotor activity and anxiety-related parameters evaluated in the open-field test. However, ketamine administration disrupted the hippocampal-dependent object recognition ability of adult rats, while improved the motor coordination addressed on the rotarod. These findings indicate that a single neonatal ketamine exposure induces a short-term reduction in the hippocampal, but not in cortical, cellular viability, and long-term alterations in hippocampal glutamate transport, improvement on motor performance, and short-term recognition memory impairment.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Conducta Animal/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/toxicidad , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Ketamina/toxicidad , Animales , Animales Recién Nacidos , Conducta Exploratoria/efectos de los fármacos , Femenino , Ácido Glutámico/farmacocinética , Ácido Glutámico/toxicidad , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar , Reconocimiento en Psicología/efectos de los fármacos , Natación , Tritio/farmacocinética
12.
Mol Neurobiol ; 54(5): 3149-3161, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052955

RESUMEN

Atorvastatin has been shown to exert a neuroprotective action by counteracting glutamatergic toxicity. Recently, we have shown atorvastatin also exerts an antidepressant-like effect that depends on both glutamatergic and serotonergic systems modulation. Excitotoxicity is involved in several brain disorders including depression; thus, it is suggested that antidepressants may target glutamatergic system as a final common pathway. In this study, a comparison of the mechanisms involved in the putative neuroprotective effect of a repetitive atorvastatin or fluoxetine treatment against glutamate toxicity in hippocampal slices was performed. Adult Swiss mice were treated with atorvastatin (10 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.), once a day during seven consecutive days. On the eighth day, animals were killed and hippocampal slices were obtained and subjected to an in vitro protocol of glutamate toxicity. An acute treatment of atorvastatin or fluoxetine was not neuroprotective; however, the repeated atorvastatin or fluoxetine treatment prevented the decrease in cellular viability induced by glutamate in hippocampal slices. The loss of cellular viability induced by glutamate was accompanied by increased D-aspartate release, increased reactive oxygen species (ROS) and nitric oxide (NO) production, and impaired mitochondrial membrane potential. Atorvastatin or fluoxetine repeated treatment also presented an antidepressant-like effect in the tail suspension test. Atorvastatin or fluoxetine treatment was effective in protecting mice hippocampal slices from glutamate toxicity by preventing the oxidative stress and mitochondrial dysfunction.


Asunto(s)
Atorvastatina/farmacología , Fluoxetina/farmacología , Ácido Glutámico/toxicidad , Hipocampo/patología , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antidepresivos/farmacología , Supervivencia Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Mol Neurobiol ; 54(8): 6163-6173, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27709490

RESUMEN

Intracerebroventricular (icv) amyloid-beta (Aß)1-40 infusion to mice has been demonstrated to cause neurotoxicty and depressive-like behavior and it can be used to evaluate antidepressant and neuroprotective effect of drugs. Atorvastatin is a widely used statin that has demonstrated antidepressant-like effect in predictable animal behavioral models and neuroprotective effect against Aß1-40 infusion. The purpose of this study was to determine the effect of in vivo atorvastatin treatment against Aß1-40-induced changes in mood-related behaviors and biochemical parameters in ex vivo hippocampal slices from mice. Atorvastatin treatment (10 mg/kg, p.o., once a day for seven consecutive days) abolished depressive-like and anhedonic-like behaviors induced by Aß1-40 (400 pmol/site, icv) infusion. Aß1-40-induced hippocampal cell damage was reversed by atorvastatin treatment. Aß1-40 infusion decreased glutamate uptake in hippocampal slices, and atorvastatin did not altered it. Glutamine synthetase activity was not altered by any treatment. Atorvastatin also increased hippocampal mature brain-derived neurotrophic factor (mBDNF)/precursor BDNF (proBDNF) ratio, suggesting an increase of proBDNF to mBDNF cleavage. Accordingly, increased tissue-type plasminogen activator (tPA) and p11 genic expression were observed in hippocampus of atorvastatin-treated mice. Atorvastatin displays antidepressant-like and neuroprotective effects against Aß1-40-induced toxicity, and these effects may involve tPA- and p11-mediated cleavage of proBDNF to mBDNF.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Atorvastatina/uso terapéutico , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Depresión/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Fragmentos de Péptidos/farmacología , Precursores de Proteínas/metabolismo , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Atorvastatina/farmacología , Depresión/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología
14.
Mol Neurobiol ; 54(7): 5482-5496, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599498

RESUMEN

Amyloid-beta (Aß) peptides are the major neuropathological hallmarks related with Alzheimer's disease (AD). Aß peptides trigger several biochemical mechanisms of neurotoxicity, including neuroinflammation and glutamatergic neurotransmission impairment. Guanosine is the endogenous guanine-derived nucleoside that modulates the glutamatergic system and the cellular redox status, thus acting as a neuroprotective agent. Here, we investigated the putative neuroprotective effect of guanosine in an AD-like mouse model. Adult mice received a single intracerebroventricular injection of Aß1-40 (400 pmol/site) or vehicle and then were treated immediately, 3 h later, and once a day during the subsequent 14 days with guanosine (8 mg/kg, intraperitoneally). Aß1-40 or guanosine did not alter mouse locomotor activity and anxiety-related behaviors. Aß1-40-treated mice displayed short-term memory deficit in the object location task that was prevented by guanosine. Guanosine prevented the Aß1-40-induced increase in latency to grooming in the splash test, an indicative of anhedonia. Aß1-40 increased Na+-independent glutamate uptake in ex vivo hippocampal slices, and guanosine reversed it to control levels. The repeated administration of guanosine increased hippocampal GDP levels, which was not observed in the group treated with Aß plus guanosine. Aß1-40 induced an increase in hippocampal ADP levels. Aß1-40 decreased GFAP expression in the hippocampal CA1 region, an effect not modified by guanosine. No differences were observed concerning synaptophysin and NeuN immunolabeling. Together, these results show that guanosine prevents memory deficit and anhedonic-like behavior induced by Aß1-40 that seem to be linked to glutamate transport unbalance and alterations on purine and metabolite levels in mouse hippocampus.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Ácido Glutámico/metabolismo , Guanosina/farmacología , Hipocampo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/patología , Ratones , Fármacos Neuroprotectores/farmacología
15.
Aging Dis ; 7(5): 657-679, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27699087

RESUMEN

Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson's and Alzheimer's diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases.

16.
Toxicol In Vitro ; 37: 162-168, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27647473

RESUMEN

Parkinson's disease (PD) involves the loss of striatal dopaminergic neurons, although other neurotransmitters and brain areas are also involved in its pathophysiology. In rodent models to PD it has been shown statins improve cognitive and motor deficits and attenuate inflammatory responses evoked by PD-related toxins. Statins are the drugs most prescribed to hypercholesterolemia, but neuroprotective effects have also been attributed to statins treatment in humans and in animal models. This study aimed to establish an in vitro model of 6-hydroxydopamine (6-OHDA)-induced toxicity, used as an initial screening test to identify effective drugs against neural degeneration related to PD. The putative neuroprotective effect of atorvastatin against 6-OHDA-induced toxicity in rat striatal, cerebrocortical and hippocampal slices was also evaluated. 6-OHDA (100µM) decreased cellular viability in slices obtained from rat cerebral cortex, hippocampus and striatum. 6-OHDA also induced an increased reactive oxygen species (ROS) production and mitochondrial dysfunction. Co-incubation of 6-OHDA with atorvastatin (10µM) or MK-801 (50µM) an N-methyl-d-aspartate (NMDA) receptor antagonist, partially attenuated the cellular damage evoked by 6-OHDA in the three brain areas. Atorvastatin partially reduced ROS production in the hippocampus and striatum and disturbances of mitochondria membrane potential in cortex and striatum. 6-OHDA-induced toxicity in vitro displays differences among the brain structures, but it is also observed in cerebrocortical and hippocampal slices, besides striatum.


Asunto(s)
Atorvastatina/farmacología , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Técnicas In Vitro , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
17.
Neurotox Res ; 29(4): 460-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26858177

RESUMEN

Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Glucosa/deficiencia , Glutamato-Amoníaco Ligasa/metabolismo , Guanosina/farmacología , Hipocampo/efectos de los fármacos , Hipoxia/patología , Análisis de Varianza , Animales , Ácido Aspártico/farmacocinética , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glutamina/farmacología , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar , Tritio/farmacocinética
18.
J Psychiatr Res ; 82: 50-7, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27468164

RESUMEN

Atorvastatin is a cholesterol-lowering statin that has been shown to exert several pleiotropic effects in the nervous system as a neuroprotective and antidepressant-like agent. Antidepressant-like effect of atorvastatin in mice is mediated by glutamatergic and serotoninergic receptors, although the precise intracellular signaling pathways involved are unknown. PI3K/Akt/GSK-3ß/mTOR signaling pathway has been associated to neurobiology of depression and seems to be modulated by some pharmacological antidepressant strategies. The present study investigated the participation of the PI3K/Akt/GSK-3ß/mTOR signaling pathway in the antidepressant-like effect of an acute atorvastatin treatment in mice. Atorvastatin sub-effective (0.01 mg/kg) or effective (0.1 mg/kg) doses in the tail suspension test (TST) was administered orally alone or in combination with PI3K, GSK-3ß or mTOR inhibitors. The administration of PI3K inhibitor, LY294002 (10 nmol/site, i.c.v) completely prevented the antidepressant-like effect of atorvastatin (0.1 mg/kg, p.o.). The participation of GSK-3ß in the antidepressant-like effect of atorvastatin was demonstrated by co-administration of a sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) with AR-A014418 (0.01 µg/site, i.c.v., a selective GSK-3ß inhibitor) or with lithium chloride (10 mg/kg, p.o., a non-selective GSK-3ß inhibitor). The mTOR inhibitor, rapamycin (0.2 nmol/site, i.c.v.) was also able to prevent atorvastatin (0.1 mg/kg, p.o.) antidepressant-like effect. These behavioral findings were supported by neurochemical observations, as atorvastatin treatment increased the immunocontent of the phosphorylated isoforms of Akt, GSK-3ß and mTOR in the hippocampus of mice. Taken together, our results suggest an involvement of the PI3K/Akt/GSK-3ß/mTOR signaling pathway in the antidepressant-like effect of atorvastatin in mice.


Asunto(s)
Antidepresivos/uso terapéutico , Atorvastatina/uso terapéutico , Depresión/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Conducta Exploratoria/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Suspensión Trasera/métodos , Inmunosupresores/farmacología , Masculino , Ratones , Proteína Oncogénica v-akt/metabolismo , Sirolimus/farmacología , Factores de Tiempo
19.
Chem Biol Interact ; 252: 74-81, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-27012433

RESUMEN

Glioblastoma multiforme is the main and most frequent tumor in adults' central nervous system. With a survival average of 5% two years after diagnosis, this type of cancer is a main health problem. Substances like the chalcones have been tested in order to develop new treatments. Here, we studied the effects of three synthetic chalcones (A23, C31 and J11) on A172 and surgery obtained-glioma cells. All chalcones showed a decrease in cell viability, mainly C31. An increase in apoptosis levels with no further increase of necrosis was observed. This augmentation may be linked to the high oxidative effect found, caused by the increased presence of reactive oxygen species and nitric oxide production. Cell cycle distribution showed an arrest at G0/G1 and S phases, suggesting that C31 interferes in cell cycle control. Our results shall aid in directing future research with this substance and its antitumor effect.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Chalconas/farmacología , Glioblastoma/tratamiento farmacológico , Antineoplásicos/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chalconas/química , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
20.
Methods Mol Biol ; 1254: 197-210, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25431067

RESUMEN

Oxygen-glucose deprivation (OGD ) is widely used as an in vitro model for stroke, showing similarities with the in vivo models of brain ischemia. In order to perform OGD, cell or tissue cultures, such as primary neurons or organotypic slices, and acutely prepared tissue slices are usually incubated in a glucose-free medium under a deoxygenated atmosphere, for example in a hypoxic chamber. Here, we describe the step-by-step procedure to expose cultures and acute slices to OGD, focusing on the most suitable methods for assessing cellular death and/or viability. OGD is a simple yet highly useful technique, not only for the elucidation of the role of key cellular and molecular mechanisms underlying brain ischemia, but also for the development of novel neuroprotective strategies.


Asunto(s)
Isquemia Encefálica/patología , Muerte Celular/genética , Neuronas/patología , Animales , Glucosa/metabolismo , Hipocampo/metabolismo , Humanos , Biología Molecular/métodos , Neuronas/metabolismo , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA