Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(7): 1427-1442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468384

RESUMEN

Fibroblast growth factor-2 (FGF2) is involved in the regulation of affective behaviour and shows antidepressant effects through the Akt and extracellular signal regulated kinase (ERK) 1/2 pathways. Nudix hydrolase 6 (NUDT6) protein is encoded from FGF2 gene's antisense strand and its role in the regulation of affective behaviour is unknown. Here, we overexpressed NUDT6 in the hippocampus and investigated its behavioural effects and the underlying molecular mechanisms affecting the behaviour. We showed that increasing hippocampal NUDT6 results in depression-like behaviour in rats without changing FGF2 levels or activating its downstream effectors, Akt and ERK1/2. Instead, NUDT6 acted by inducing inflammatory signalling, specifically by increasing S100 calcium binding protein A9 (S100A9) levels, activating nuclear factor-kappa B-p65 (NF-κB-p65), and elevating microglia numbers along with a reduction in neurogenesis. Our results suggest that NUDT6 could play a role in major depression by inducing a proinflammatory state. This is the first report of an antisense protein acting through a different mechanism of action than regulation of its sense protein. The opposite effects of NUDT6 and FGF2 on depression-like behaviour may serve as a mechanism to fine-tune affective behaviour. Our findings open up new venues for studying the differential regulation and functional interactions of sense and antisense proteins in neural function and behaviour, as well as in neuropsychiatric disorders. KEY POINTS: Hippocampal overexpression of nudix hydrolase 6 (NUDT6), the antisense protein of fibroblast growth factor-2 (FGF2), increases depression-like behaviour in rats. Hippocampal NUDT6 overexpression triggers a neuroinflammatory cascade by increasing S100 calcium binding proteinA9 (S100A9) expression and nuclear NF-κB-p65 translocation in neurons, in addition to microglial recruitment and activation. Hippocampal NUDT6 overexpression suppresses neurogenesis. NUDT6 exerts its actions without altering the levels or downstream signalling pathways of FGF2.


Asunto(s)
Depresión , Factor 2 de Crecimiento de Fibroblastos , FN-kappa B , Animales , Ratas , Factor 2 de Crecimiento de Fibroblastos/genética , Inflamación/genética , Neurogénesis/genética , FN-kappa B/metabolismo , FN-kappa B/farmacología , Proteínas Proto-Oncogénicas c-akt , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Depresión/genética , Depresión/metabolismo
2.
J Headache Pain ; 25(1): 124, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39080518

RESUMEN

BACKGROUND: The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION: We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.


Asunto(s)
Meninges , Trastornos Migrañosos , Enfermedades Neuroinflamatorias , Transducción de Señal , Humanos , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Enfermedades Neuroinflamatorias/fisiopatología , Animales , Transducción de Señal/fisiología , Neuronas/metabolismo
3.
J Headache Pain ; 25(1): 120, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044141

RESUMEN

Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.


Asunto(s)
Depresión de Propagación Cortical , Enfermedades Neuroinflamatorias , Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Depresión de Propagación Cortical/efectos de los fármacos , Depresión de Propagación Cortical/fisiología , Animales , Antagonistas del Receptor Purinérgico P2X/farmacología , Masculino , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/efectos de los fármacos , Optogenética , Ratones , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Niacinamida/análogos & derivados , Piperazinas
4.
J Neuroinflammation ; 20(1): 295, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082296

RESUMEN

The role of high mobility group box 1 (HMGB1) in inflammation is well characterized in the immune system and in response to tissue injury. More recently, HMGB1 was also shown to initiate an "inflammatory signaling cascade" in the brain parenchyma after a mild and brief disturbance, such as cortical spreading depolarization (CSD), leading to headache. Despite substantial evidence implying a role for inflammatory signaling in prevalent neuropsychiatric disorders such as migraine and depression, how HMGB1 is released from healthy neurons and how inflammatory signaling is initiated in the absence of apparent cell injury are not well characterized. We triggered a single cortical spreading depolarization by optogenetic stimulation or pinprick in naïve Swiss albino or transgenic Thy1-ChR2-YFP and hGFAP-GFP adult mice. We evaluated HMGB1 release in brain tissue sections prepared from these mice by immunofluorescent labeling and immunoelectron microscopy. EzColocalization and Costes thresholding algorithms were used to assess the colocalization of small extracellular vesicles (sEVs) carrying HMGB1 with astrocyte or microglia processes. sEVs were also isolated from the brain after CSD, and neuron-derived sEVs were captured by CD171 (L1CAM). sEVs were characterized with flow cytometry, scanning electron microscopy, nanoparticle tracking analysis, and Western blotting. We found that HMGB1 is released mainly within sEVs from the soma of stressed neurons, which are taken up by surrounding astrocyte processes. This creates conditions for selective communication between neurons and astrocytes bypassing microglia, as evidenced by activation of the proinflammatory transcription factor NF-ĸB p65 in astrocytes but not in microglia. Transmission immunoelectron microscopy data illustrated that HMGB1 was incorporated into sEVs through endosomal mechanisms. In conclusion, proinflammatory mediators released within sEVs can induce cell-specific inflammatory signaling in the brain without activating transmembrane receptors on other cells and causing overt inflammation.


Asunto(s)
Astrocitos , Proteína HMGB1 , Animales , Ratones , Astrocitos/metabolismo , Proteína HMGB1/metabolismo , Inflamación/etiología , Neuronas/metabolismo , Transducción de Señal
5.
J Headache Pain ; 23(1): 107, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986251

RESUMEN

BACKGROUND: Unlike the spontaneously appearing aura in migraineurs, experimentally, cortical spreading depression (CSD), the neurophysiological correlate of aura is induced by non-physiological stimuli. Consequently, neural mechanisms involved in spontaneous CSD generation, which may provide insight into how migraine starts in an otherwise healthy brain, remain largely unclear. We hypothesized that CSD can be physiologically induced by sensory stimulation in primed mouse brain. METHODS: Cortex was made susceptible to CSD with partial inhibition of Na+/K+-ATPase by epidural application of a low concentration of Na+/K+-ATPase blocker ouabain, allowing longer than 30-min intervals between CSDs or by knocking-down α2 subunit of Na+/K+-ATPase, which is crucial for K+ and glutamate re-uptake, with shRNA. Stimulation-triggered CSDs and extracellular K+ changes were monitored in vivo electrophysiologically and a K+-sensitive fluoroprobe (IPG-4), respectively. RESULTS: After priming with ouabain, photic stimulation significantly increased the CSD incidence compared with non-stimulated animals (44.0 vs. 4.9%, p < 0.001). Whisker stimulation also significantly increased the CSD incidence, albeit less effectively (14.9 vs. 2.4%, p = 0.02). Knocking-down Na+/K+-ATPase (50% decrease in mRNA) lowered the CSD threshold in all mice tested with KCl but triggered CSDs in 14.3% and 16.7% of mice with photic and whisker stimulation, respectively. Confirming Na+/K+-ATPase hypofunction, extracellular K+ significantly rose during sensory stimulation after ouabain or shRNA treatment unlike controls. In line with the higher CSD susceptibility observed, K+ rise was more prominent after ouabain. To gain insight to preventive mechanisms reducing the probability of stimulus-evoked CSDs, we applied an A1-receptor antagonist (DPCPX) to the occipital cortex, because adenosine formed during stimulation from ATP can reduce CSD susceptibility. DPCPX induced spontaneous CSDs but only small-DC shifts along with suppression of EEG spikes during photic stimulation, suggesting that the inhibition co-activated with sensory stimulation could limit CSD ignition when K+ uptake was not sufficiently suppressed as with ouabain. CONCLUSIONS: Normal brain is well protected against CSD generation. For CSD to be ignited under physiological conditions, priming and predisposing factors are required as seen in migraine patients. Intense sensory stimulation has potential to trigger CSD when co-existing conditions bring extracellular K+ and glutamate concentrations over CSD-ignition threshold and stimulation-evoked inhibitory mechanisms are overcome.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Migraña con Aura , Adenosina Trifosfatasas/farmacología , Animales , Encéfalo , Depresión de Propagación Cortical/fisiología , Ácido Glutámico , Ratones , Ouabaína/farmacología , ARN Interferente Pequeño/farmacología
6.
Neurobiol Dis ; 156: 105424, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34118418

RESUMEN

Neuroinflammatory changes involving neuronal HMGB1 release and astrocytic NF-κB nuclear translocation occur following cortical spreading depolarization (CSD) in wildtype (WT) mice but it is unknown to what extent this occurs in the migraine brain. We therefore investigated in familial hemiplegic migraine type 1 (FHM1) knock-in mice, which express an intrinsic hyperexcitability phenotype, the extent of neuroinflammation without and after CSD. CSD was evoked in one hemisphere by pinprick (single CSD) or topical KCl application (multiple CSDs). Neuroinflammatory (HMGB1, NF-κB) and neuronal activation (pERK) markers were investigated by immunohistochemistry in the brains of WT and FHM1 mutant mice without and after CSD. Effects of NMDA receptor antagonism on basal and CSD-induced neuroinflammatory changes were examined by, respectively, systemically administered MK801 and ifenprodil or topical MK801 application. In FHM1 mutant mice, CSD caused enhanced neuronal HMGB1 release and astrocytic NF-κB nuclear translocation in the cortex and subcortical areas that were equally high in both hemispheres. In WT mice such effects were only pronounced in the hemisphere in which CSD was induced. Neuroinflammatory responses were associated with pERK expression indicating neuronal activation. Upon CSD, contralateral cortical and striatal HMGB1 release was reduced by topical application of MK801 in the hemisphere contralateral to the one in which CSD was induced. This study reveals that neuroinflammatory activation after CSD is widespread and extends to the contralateral hemisphere, particularly in brains of FHM1 mutant mice. Effective blockade of CSD-induced neuroinflammatory responses in the contralateral hemisphere in FHM1 mice by local NMDA receptor antagonism suggests that neuronal hyperexcitability-related neuroinflammation is relevant in migraine pathophysiology, but possibly also other neurological disorders in which spreading depolarization is involved.


Asunto(s)
Encéfalo/metabolismo , Ataxia Cerebelosa/metabolismo , Depresión de Propagación Cortical/fisiología , Proteína HMGB1/metabolismo , Trastornos Migrañosos/metabolismo , FN-kappa B/metabolismo , Tejido Parenquimatoso/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/fisiopatología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/fisiopatología , Femenino , Proteína HMGB1/genética , Humanos , Ratones , Ratones Transgénicos , Trastornos Migrañosos/genética , Trastornos Migrañosos/fisiopatología , FN-kappa B/genética , Tejido Parenquimatoso/fisiopatología
7.
J Headache Pain ; 22(1): 138, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794382

RESUMEN

BACKGROUND: Pain is generally concomitant with an inflammatory reaction at the site where the nociceptive fibers are activated. Rodent studies suggest that a sterile meningeal inflammatory signaling cascade may play a role in migraine headache as well. Experimental studies also suggest that a parenchymal inflammatory signaling cascade may report the non-homeostatic conditions in brain to the meninges to induce headache. However, how these signaling mechanisms function in patients is unclear and debated. Our aim is to discuss the role of inflammatory signaling in migraine pathophysiology in light of recent developments. BODY: Rodent studies suggest that a sterile meningeal inflammatory reaction can be initiated by release of peptides from active trigeminocervical C-fibers and stimulation of resident macrophages and dendritic/mast cells. This inflammatory reaction might be needed for sustained stimulation and sensitization of meningeal nociceptors after initial activation along with ganglionic and central mechanisms. Most migraines likely have cerebral origin as suggested by prodromal neurologic symptoms. Based on rodent studies, a parenchymal inflammatory signaling cascade has been proposed as a potential mechanism linking cortical spreading depolarization (CSD) to meningeal nociception. A recent PET/MRI study using a sensitive inflammation marker showed the presence of meningeal inflammatory activity in migraine with aura patients over the occipital cortex generating the visual aura. These studies also suggest the presence of a parenchymal inflammatory activity, supporting the experimental findings. In rodents, parenchymal inflammatory signaling has also been shown to be activated by migraine triggers such as sleep deprivation without requiring a CSD because of the resultant transcriptional changes, predisposing to inadequate synaptic energy supply during intense excitatory transmission. Thus, it may be hypothesized that neuronal stress created by either CSD or synaptic activity-energy mismatch could both initiate a parenchymal inflammatory signaling cascade, propagating to the meninges, where it is converted to a lasting headache with or without aura. CONCLUSION: Experimental studies in animals and emerging imaging findings from patients warrant further research to gain deeper insight to the complex role of inflammatory signaling in headache generation in migraine.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Animales , Humanos , Meninges , Trastornos Migrañosos/complicaciones , Inflamación Neurogénica , Nociceptores
8.
Ann Neurol ; 83(1): 61-73, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244233

RESUMEN

OBJECTIVE: Glycogen in astrocyte processes contributes to maintenance of low extracellular glutamate and K+ concentrations around excitatory synapses. Sleep deprivation (SD), a common migraine trigger, induces transcriptional changes in astrocytes, reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches. METHODS: We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD. RESULTS: DAB caused neuronal pannexin-1 large pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking down the neuronal lactate transporter MCT2 with an antisense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly delivered phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, Asante Potassium Green-4, revealed that DAB treatment or SD caused a significant rise in extracellular K+ during whisker stimulation, illustrating the critical role of glycogen in extracellular K+ clearance. INTERPRETATION: Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lower the CSD threshold. Therefore, conditions that limit energy supply to synapses (eg, SD) may predispose to migraine attacks, as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. Ann Neurol 2018;83:61-73.


Asunto(s)
Química Encefálica , Depresión de Propagación Cortical/genética , Glucógeno/metabolismo , Privación de Sueño/fisiopatología , Animales , Arabinosa/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Conexinas/efectos de los fármacos , Conexinas/metabolismo , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Proteína HMGB1/metabolismo , Iminofuranosas/farmacología , Inyecciones Intraventriculares , Ratones , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/farmacología , Floretina/farmacología , Potasio/fisiología , Alcoholes del Azúcar/farmacología , Vibrisas/inervación
9.
Adv Exp Med Biol ; 1147: 189-213, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147879

RESUMEN

Recent stroke research has shifted the focus to the microvasculature from neuron-centric views. It is increasingly recognized that a successful neuroprotection is not feasible without microvascular protection. On the other hand, recent studies on pericytes, long-neglected cells on microvessels have provided insight into the regulation of microcirculation. Pericytes play an essential role in matching the metabolic demand of nervous tissue with the blood flow in addition to regulating the development and maintenance of the blood-brain barrier (BBB), leukocyte trafficking across the BBB and angiogenesis. Pericytes appears to be highly vulnerable to injury. Ischemic injury to pericytes on cerebral microvasculature unfavorably impacts the stroke-induced tissue damage and brain edema by disrupting microvascular blood flow and BBB integrity. Strongly supporting this, clinical imaging studies show that tissue reperfusion is not always obtained after recanalization. Therefore, prevention of pericyte dysfunction may improve the outcome of recanalization therapies by promoting microcirculatory reperfusion and preventing hemorrhage and edema. In the peri-infarct tissue, pericytes are detached from microvessels and promote angiogenesis and neurogenesis, and hence positively effect stroke outcome. Expectedly, we will learn more about the place of pericytes in CNS pathologies including stroke and devise approaches to treat them in the next decades.


Asunto(s)
Isquemia Encefálica , Pericitos , Accidente Cerebrovascular , Barrera Hematoencefálica , Humanos , Microcirculación
10.
Stroke ; 49(5): 1267-1275, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29669868

RESUMEN

BACKGROUND AND PURPOSE: Reperfusion is the most significant determinant of good outcome after ischemic stroke. However, complete reperfusion often cannot be achieved, despite satisfactory recanalization. We hypothesized that microvascular protection was essential for achieving effective reperfusion and, hence, neuroprotection. To test this hypothesis, we have developed an in vivo model to differentially monitor parenchymal and vascular reactive oxygen species (ROS) formation. By comparing the ROS-suppressing effect of N-tert-butyl-α-phenylnitrone (PBN) with its blood-brain barrier impermeable analog 2-sulfo-phenyl-N-tert-butylnitrone (S-PBN), we assessed the impact of vascular ROS suppression alone on reperfusion and stroke outcome after recanalization. METHODS: The distal middle cerebral artery was occluded for 1 hour by compressing with a micropipette and then recanalized (n=60 Swiss mice). ROS formation was monitored for 1 hour after recanalization by intravital fluorescence microscopy in pial vasculature and cortical parenchyma with topically applied hydroethidine through a cranial window. PBN (100 mg/kg) or S-PBN (156 mg/kg) was administered shortly before recanalization, and suppression of the vascular and parenchymal hydroethidine fluorescence was examined (n=22). Microcirculatory patency, reperfusion, ischemic tissue size, and neurological outcome were also assessed in a separate group of mice 1 to 72 hours after recanalization (n=30). RESULTS: PBN and S-PBN completely suppressed the reperfusion-induced increase in ROS signal within vasculature. PBN readily suppressed ROS produced in parenchyma by 88%. S-PBN also suppressed the parenchymal ROS by 64% but starting 40 minutes later. Intriguingly, PBN and S-PBN comparably reduced the size of ischemic area by 65% and 48% (P>0.05), respectively. S-PBN restored the microvascular patency and perfusion after recanalization, suggesting that its delayed parenchymal antioxidant effect could be secondary to improved microcirculatory reperfusion. CONCLUSIONS: Promoting microvascular reperfusion by protecting vasculature can secondarily reduce parenchymal ROS formation and provide neuroprotection. The model presented can be used to directly assess pharmacological end points postulated in brain parenchyma and vasculature in vivo.


Asunto(s)
Bencenosulfonatos/farmacología , Corteza Cerebral/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Óxidos N-Cíclicos/farmacología , Infarto de la Arteria Cerebral Media/metabolismo , Microcirculación/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Piamadre/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Barrera Hematoencefálica , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Colorantes Fluorescentes , Infarto de la Arteria Cerebral Media/patología , Microscopía Intravital , Masculino , Ratones , Microscopía Fluorescente , Fenantridinas , Piamadre/irrigación sanguínea , Piamadre/metabolismo , Piamadre/patología , Reperfusión
11.
Appl Opt ; 55(33): 9526-9531, 2016 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-27869849

RESUMEN

Although progress has been made for recanalization therapies after ischemic stroke, post-treatment imaging studies show that tissue reperfusion cannot be attained despite satisfactory recanalization in a significant percentage of patients. Hence, investigation of microcirculatory changes in both surface and deep cortical levels after ischemia reperfusion is important for understanding the post-stroke blood flow dynamics. In this study, we applied optical coherence tomography (OCT) imaging of cerebral blood flow for the quantification of the microcirculatory changes. We obtained OCT microangiogram of the brain cortex in a mouse stroke model and analyzed the data to trace changes in the capillary perfusion level (CPL) before, during, and after the stroke. The CPL changes were estimated in 1 and 2 h ischemia groups as well as in a non-ischemic sham-operated group. For the estimation of CPL, a decorrelation amplitude-based algorithm was implemented and used. As a result, the CPL considerably decreased during ischemia but recovered to the baseline when recanalization was performed 1 h after ischemia; however, the CPL was significantly reduced when recanalization was delayed to 2 h after ischemia. These data demonstrate that ischemia causes microcirculation dysfunction, leading to a decreased capillary reperfusion after recanalization. Microcirculatory no-reflow warrants more rigorous assessment in clinical trials, whereas advanced optical imaging techniques may provide mechanistic insight and solutions in experimental studies.


Asunto(s)
Circulación Cerebrovascular , Microcirculación , Accidente Cerebrovascular/fisiopatología , Tomografía de Coherencia Óptica , Animales , Encéfalo/irrigación sanguínea , Ratones , Reperfusión
12.
J Stroke Cerebrovasc Dis ; 25(5): 1041-1047, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26853139

RESUMEN

BACKGROUND: The relatively late approval of use of recombinant tissue plasminogen activator (rt-PA) for acute ischemic stroke in Turkey has resulted in obvious underuse of this treatment. Here we present the analyses of the nationwide registry, which was created to prompt wider use of intravenous thrombolysis, as well as to monitor safe implementation of the treatment in our country. METHODS: Patients were registered prospectively in our database between 2006 and 2013. Admission and 24-hour National Institutes of Health Stroke Scale and 3-month modified Rankin Scale scores were recorded. A "high-volume center" was defined as a center treating 10 or more patients with rt-PA per year. RESULTS: A total of 1133 patients were enrolled into the registry by 38 centers in 18 cities. A nearly 4-fold increase in the study population and in the number of participating centers was observed over the 6 years of the study. The mean baseline NIHSS score was 14.5 ± 5.7, and the prevalence of symptomatic hemorrhage was 4.9%. Mortality at 3 months decreased from 22% to 11% in the 6 years of enrollment, and 65% of cases were functionally independent. Age older than 70 years, an NIHSS score higher than 14 upon hospital admission, and intracranial hemorrhage were independently associated with mortality, and being treated in a high-volume center was related to good outcome. CONCLUSIONS: We observed a decreasing trend in mortality and an acceptable prevalence of symptomatic hemorrhage over 6 years with continuous addition of new centers to the registry. The first results of this prospective study are encouraging and will stimulate our efforts at increasing the use of intravenous thrombolysis in Turkey.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fibrinolíticos/administración & dosificación , Pautas de la Práctica en Medicina , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica , Activador de Tejido Plasminógeno/administración & dosificación , Anciano , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/mortalidad , Femenino , Fibrinolíticos/efectos adversos , Hospitales de Alto Volumen , Hospitales de Bajo Volumen , Humanos , Infusiones Intravenosas , Hemorragias Intracraneales/inducido químicamente , Hemorragias Intracraneales/mortalidad , Masculino , Persona de Mediana Edad , Pautas de la Práctica en Medicina/tendencias , Prevalencia , Estudios Prospectivos , Proteínas Recombinantes/administración & dosificación , Sistema de Registros , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/mortalidad , Terapia Trombolítica/efectos adversos , Terapia Trombolítica/mortalidad , Terapia Trombolítica/tendencias , Factores de Tiempo , Activador de Tejido Plasminógeno/efectos adversos , Resultado del Tratamiento , Turquía/epidemiología
13.
Int J Neurosci ; 125(12): 941-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25340256

RESUMEN

Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke.


Asunto(s)
Encéfalo/efectos de los fármacos , Depresión de Propagación Cortical/efectos de los fármacos , Citidina Difosfato Colina/farmacología , Nootrópicos/farmacología , Poloxámero/farmacología , Análisis de Varianza , Animales , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/efectos de los fármacos , Ratones
15.
Cardiovasc Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074200

RESUMEN

In the last 20 years there has been a revolution in our understanding of how blood flow is regulated in many tissues. Whereas it used to be thought that essentially all blood flow control occurred at the arteriole level, it is now recognised that control of capillary blood flow by contractile pericytes plays a key role both in regulating blood flow physiologically and in reducing it in clinically-relevant pathological conditions. In this article we compare and contrast how brain and cardiac pericytes regulate cerebral and coronary blood flow, focusing mainly on the pathological events of cerebral and cardiac ischemia. The cerebral and coronary capillary beds differ dramatically in morphology, yet in both cases pericyte-mediated capillary constriction plays a key role in restricting blood flow after ischemia and possibly in other pathological conditions. We conclude with suggestions for therapeutic approaches to relaxing pericytes, which may prove useful in the long term for reducing pericyte-induced ischemia.

16.
Nutrients ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39064664

RESUMEN

This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.


Asunto(s)
Eje Cerebro-Intestino , Dieta , Microbioma Gastrointestinal , Trastornos Migrañosos , Humanos , Microbioma Gastrointestinal/fisiología , Trastornos Migrañosos/microbiología , Trastornos Migrañosos/terapia , Eje Cerebro-Intestino/fisiología , Encéfalo , Conducta Alimentaria/fisiología , Prebióticos/administración & dosificación , Probióticos/uso terapéutico
17.
Curr Pain Headache Rep ; 17(10): 368, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23996724

RESUMEN

Fasting or skipping meals are well-characterized migraine triggers. However, mechanisms of the fasting-induced migraine headache are unclear. Here, we review the recent developments on brain glycogen metabolism and its modulation by sympathetic activity and propose that insufficient supply of glycogen-derived glucose at the onset of intense synaptic activity may lead to an imbalance between the excitatory and inhibitory terminals, causing collective depolarization of neurons and astrocytes in a network. This may activate perivascular trigeminal afferents by opening neuronal pannexin1 channels and initiating parenchymal inflammatory pathways. Depending on whether or not network depolarization spreads or remains local, fasting may trigger migraine headache with or without aura.


Asunto(s)
Ayuno/efectos adversos , Ayuno/fisiología , Trastornos Migrañosos/fisiopatología , Humanos
18.
J Cereb Blood Flow Metab ; 43(11): 1951-1966, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37435741

RESUMEN

Periventricular white matter lesions (WMLs) are common MRI findings in migraine with aura (MA). Although hemodynamic disadvantages of vascular supply to this region create vulnerability, the pathophysiological mechanisms causing WMLs are unclear. We hypothesize that prolonged oligemia, a consequence of cortical spreading depolarization (CSD) underlying migraine aura, may lead to ischemia/hypoxia at hemodynamically vulnerable watershed zones fed by long penetrating arteries (PAs). For this, we subjected mice to KCl-triggered single or multiple CSDs. We found that post-CSD oligemia was significantly deeper at medial compared to lateral cortical areas, which induced ischemic/hypoxic changes at watershed areas between the MCA/ACA, PCA/anterior choroidal and at the tip of superficial and deep PAs, as detected by histological and MRI examination of brains 2-4 weeks after CSD. BALB-C mice, in which MCA occlusion causes large infarcts due to deficient collaterals, exhibited more profound CSD-induced oligemia and were more vulnerable compared to Swiss mice such that a single CSD was sufficient to induce ischemic lesions at the tip of PAs. In conclusion, CSD-induced prolonged oligemia has potential to cause ischemic/hypoxic injury at hemodynamically vulnerable brain areas, which may be one of the mechanisms underlying WMLs located at the tip of medullary arteries seen in MA patients.


Asunto(s)
Depresión de Propagación Cortical , Migraña con Aura , Sustancia Blanca , Ratones , Humanos , Animales , Depresión de Propagación Cortical/fisiología , Constricción , Ratones Endogámicos BALB C , Arterias , Isquemia
19.
Turk Psikiyatri Derg ; 34(4): 272-281, 2023.
Artículo en Inglés, Turco | MEDLINE | ID: mdl-38173328

RESUMEN

OBJECTIVE: Under physiological conditions, astrocytes produce lactate to meet the increased synaptic energy demand due to neuronal activity. In the light of the findings showing that this process is disrupted in the pathophysiology of major depression, the aim of this study is to investigate the effect of pharmacological inhibition of perisynaptic astrocyte glycogen utilization on anxiety-like behavior and depression-like behavior in female and male mice. METHODS: In this study, DAB (1,4-dideoxy-1,4-imino-D-arabinitol), which is an inhibitor of glycogen breaking enzyme glycogen phosphorylase, was intrahippocampally administered to 15 female and 14 male Swiss albino mice, while 15 female and 12 male Swiss albino mice received intrahippocampal saline injections. Three and five days after the injections, the anxiety-like and depression-like behaviors of the mice were assessed by locomotor activity, open-field test, light-dark box test, tail suspension test and sucrose preference test. RESULTS: Three days after injection, neither depression-like nor anxietylike significant behavioral changes were detected in the male experimental group mice compared to the control group; but an increase in locomotor activity (p=0.05) and time spent in the open-field (p=0.01) were observed on the fifth day. In evaluations of the female experimental group mice on the third and fifth days, depression-like and anxiety-like behaviors were found similar to the control group, as seen in the male mice. The only significant difference in the experimental group female mice was found in the sucrose preference test, which revealed an increased tendency to prefer sucrose (p=0.003) compared to the control group. CONCLUSION: The inhibition of glycogen use in the hippocampus by DAB did not affect anxiety-like and depression-like behaviors 3 and 5 days after injection in both female and male mice. The increase in the time spent in the open-field by male experimental group mice was associated not with anxiety, but with increase in the locomotor activity. The fact that no significant difference was observed in the light-dark box test, which is another test used to evaluate anxiety, supported this opinion. The increase seen in the sucrose preference test in female experimental group mice was not interpreted as an increase in hedonic behavior because prevention of glycogen breakdown in the hypothalamus might have homeostatically increased sugar-craving and therefore resulted in an increase in sucrose preference. Different set of tests better targeting the energy and glucose metabolism and applied at farther time points than surgery are recommended for future studies.


Asunto(s)
Depresión , Glucógeno , Humanos , Ratones , Animales , Masculino , Femenino , Glucógeno/metabolismo , Astrocitos/metabolismo , Ansiedad , Sacarosa/metabolismo
20.
J Neurochem ; 123 Suppl 2: 2-11, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23050637

RESUMEN

Currently, the best way of neuroprotection for acute ischemic stroke appears to be restoration of blood flow to the ischemic area by thrombolysis. Unfortunately, a short therapeutic time window as well as thrombolysis-induced bleeding and edema limit the use of recanalization therapies. Here, we review the evidence suggesting that ischemia/reperfusion-induced microvascular injury plays a critical role in determining tissue survival after recanalization in focal cerebral ischemia by disrupting the blood-brain barrier integrity and promoting microcirculatory clogging. Among many complex mechanisms of the ischemia-reperfusion injury, overproduction of oxygen and nitrogen radicals on the microvascular wall appears to significantly contribute to these pathological processes. These developments bring about the exciting possibility that effective suppression of oxidative/nitrative stress during pharmacological or interventional re-opening of the occluded artery may significantly improve the outcome of recanalization therapies in stroke patients by improving microcirculatory reflow as well as by preventing hemorrhagic conversion and vasogenic edema. They also point to the critical (but partly neglected) importance of the microcirculation in neuroprotection.


Asunto(s)
Microvasos/fisiología , Daño por Reperfusión/prevención & control , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Humanos , Fármacos Neuroprotectores/uso terapéutico , Óxidos de Nitrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Daño por Reperfusión/tratamiento farmacológico , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA