Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Struct Biol ; 192(2): 151-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26409249

RESUMEN

Electron microscopy is commonly employed to determine the subunit organization of large macromolecular assemblies. However, the field lacks a robust molecular labeling methodology for unambiguous identification of constituent subunits. We present a strategy that exploits the unique properties of an unnatural amino acid in order to enable site-specific attachment of a single, readily identifiable protein label at any solvent-exposed position on the macromolecular surface. Using this method, we show clear labeling of a subunit within the 26S proteasome lid subcomplex that has not been amenable to labeling by traditional approaches.


Asunto(s)
Microscopía Electrónica/métodos , Complejo de la Endopetidasa Proteasomal/análisis , Complejo de la Endopetidasa Proteasomal/química , Proteínas/análisis , Coloración y Etiquetado/métodos , Aminoácidos/química , Química Clic/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Imagenología Tridimensional/métodos , Sustancias Macromoleculares/análisis , Modelos Moleculares
2.
J Biol Chem ; 288(48): 34956-67, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24145028

RESUMEN

Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.


Asunto(s)
Bacteroides fragilis/genética , Inflamación/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloendopeptidasas/metabolismo , Secuencia de Aminoácidos , Bacteroides fragilis/patogenicidad , Islas Genómicas/genética , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloendopeptidasas/genética , Microbiota , Neoplasias/genética , Neoplasias/patología , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Proteolisis , Especificidad por Sustrato
3.
J Biol Chem ; 286(32): 28435-43, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21680742

RESUMEN

Two Drosophila myosin II point mutations (D45 and Mhc(5)) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc(5)) could stabilize (D45) or destabilize (Mhc(5)) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that causes the cardiomyopathic phenotypes to develop, we determined whether the kinetic properties of the mutant molecules have been altered. We used myosin subfragment 1 (S1) carrying either of the two mutations (S1(A261T) and S1(G200D)) from the indirect flight muscles of Drosophila. The kinetic data show that the two point mutations have an opposite effect on the enzymatic activity of S1. S1(A261T) is less active (reduced ATPase, higher ADP affinity for S1 and actomyosin subfragment 1 (actin · S1), and reduced ATP-induced dissociation of actin · S1), whereas S1(G200D) shows increased enzymatic activity (enhanced ATPase, reduced ADP affinity for both S1 and actin · S1). The opposite changes in the myosin properties are consistent with the induced cardiac phenotypes for S1(A261T) (dilated) and S1(G200D) (restrictive). Our results provide novel insights into the molecular mechanisms that cause different cardiomyopathy phenotypes for these mutants. In addition, we report that S1(A261T) weakens the affinity of S1 · ADP for actin, whereas S1(G200D) increases it. This may account for the suppression (A261T) or enhancement (G200D) of the skeletal muscle hypercontraction phenotype induced by the troponin I held-up(2) mutation in Drosophila.


Asunto(s)
Actinas , Adenosina Difosfato/metabolismo , Cardiomiopatía Restrictiva , Proteínas de Drosophila , Modelos Cardiovasculares , Miosina Tipo II , Mutación Puntual , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animales , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Músculos/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fenotipo , Troponina I/genética , Troponina I/metabolismo
4.
Biophys J ; 96(10): 4132-43, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19450484

RESUMEN

The subfragment 2/light meromyosin "hinge" region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Miofibrillas/química , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/metabolismo , Miosina Tipo II/química , Miosina Tipo II/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Fenómenos Biomecánicos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Humanos , Cinética , Microscopía Electrónica , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/fisiología , Miofibrillas/fisiología , Subfragmentos de Miosina/química , Miosina Tipo II/genética , Sarcómeros/química , Sarcómeros/fisiología , Difracción de Rayos X
5.
J Mol Biol ; 367(5): 1312-29, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17316684

RESUMEN

Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/química , Músculo Esquelético/ultraestructura , Cadenas Pesadas de Miosina/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transgenes
6.
Elife ; 5: e13027, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26744777

RESUMEN

The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a deubiquitinase within the 'lid' sub-complex. Prior to the lid's incorporation into the proteasome, Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific residues, we describe the network of interactions that are required to stabilize this inhibited state. These results provide significant insight into the intricate mechanisms of proteasome assembly, outlining the substantial conformational rearrangements that occur during incorporation of the lid into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation.


Asunto(s)
Enzimas Desubicuitinizantes/antagonistas & inhibidores , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Microscopía por Crioelectrón , Análisis Mutacional de ADN , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/ultraestructura
7.
Nat Struct Mol Biol ; 22(9): 712-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26301997

RESUMEN

Substrates are targeted for proteasomal degradation through the attachment of ubiquitin chains that need to be removed by proteasomal deubiquitinases before substrate processing. In budding yeast, the deubiquitinase Ubp6 trims ubiquitin chains and affects substrate processing by the proteasome, but the underlying mechanisms and the location of Ubp6 within the holoenzyme have been elusive. Here we show that Ubp6 activity strongly responds to interactions with the base ATPase and the conformational state of the proteasome. Electron microscopy analyses reveal that ubiquitin-bound Ubp6 contacts the N ring and AAA+ ring of the ATPase hexamer and is in proximity to the deubiquitinase Rpn11. Ubiquitin-bound Ubp6 inhibits substrate deubiquitination by Rpn11, stabilizes the substrate-engaged conformation of the proteasome and allosterically interferes with the engagement of a subsequent substrate. Ubp6 may thus act as a ubiquitin-dependent 'timer' to coordinate individual processing steps at the proteasome and modulate substrate degradation.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sustancias Macromoleculares/ultraestructura , Microscopía Electrónica , Complejos Multienzimáticos/ultraestructura
8.
J Mol Biol ; 413(4): 751-61, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21945294

RESUMEN

Detailed studies of ribosomal proteins (RPs), essential components of the protein biosynthetic machinery, have been hampered by the lack of readily accessible chromosomal deletions of the corresponding genes. Here, we report the systematic genomic deletion of 41 individual RP genes in Escherichia coli, which are not included in the Keio collection. Chromosomal copies of these genes were replaced by an antibiotic resistance gene in the presence of an inducible, easy-to-exchange plasmid-born allele. Using this knockout collection, we found nine RPs (L15, L21, L24, L27, L29, L30, L34, S9, and S17) nonessential for survival under induction conditions at various temperatures. Taken together with previous results, this analysis revealed that 22 of the 54 E. coli RP genes can be individually deleted from the genome. These strains also allow expression of truncated protein variants to probe the importance of RNA-protein interactions in functional sites of the ribosome. This set of strains should enhance in vivo studies of ribosome assembly/function and may ultimately allow systematic substitution of RPs with RNA.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Proteínas Ribosómicas/genética , Farmacorresistencia Bacteriana , Escherichia coli/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Genes Esenciales , Viabilidad Microbiana , Plásmidos , Recombinación Genética
9.
J Mol Biol ; 389(4): 707-21, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19393244

RESUMEN

We investigated the biochemical and biophysical properties of one of the four alternative regions within the Drosophila myosin catalytic domain: the relay domain encoded by exon 9. This domain of the myosin head transmits conformational changes in the nucleotide-binding pocket to the converter domain, which is crucial to coupling catalytic activity with mechanical movement of the lever arm. To study the function of this region, we used chimeric myosins (IFI-9b and EMB-9a), which were generated by exchange of the exon 9-encoded domains between the native embryonic body wall (EMB) and indirect flight muscle isoforms (IFI). Kinetic measurements show that exchange of the exon 9-encoded region alters the kinetic properties of the myosin S1 head. This is reflected in reduced values for ATP-induced actomyosin dissociation rate constant (K(1)k(+2)) and ADP affinity (K(AD)), measured for the chimeric constructs IFI-9b and EMB-9a, compared to wild-type IFI and EMB values. Homology models indicate that, in addition to affecting the communication pathway between the nucleotide-binding pocket and the converter domain, exchange of the relay domains between IFI and EMB affects the communication pathway between the nucleotide-binding pocket and the actin-binding site in the lower 50-kDa domain (loop 2). These results suggest an important role of the relay domain in the regulation of actomyosin cross-bridge kinetics.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Exones , Miosinas , Isoformas de Proteínas , Actomiosina/química , Actomiosina/genética , Actomiosina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Vuelo Animal , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
10.
Mol Biol Cell ; 19(2): 553-62, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18045988

RESUMEN

Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc(5) affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc(5) (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc(5) myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc(5) mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders.


Asunto(s)
Drosophila melanogaster/metabolismo , Músculo Esquelético/metabolismo , Mutación/genética , Miocardio/metabolismo , Miofibrillas/química , Miosinas/química , Miosinas/genética , Envejecimiento , Secuencia de Aminoácidos , Animales , Fenómenos Biomecánicos , Drosophila melanogaster/genética , Genes de Insecto , Datos de Secuencia Molecular , Músculo Esquelético/ultraestructura , Proteínas Mutantes/metabolismo , Miofibrillas/ultraestructura , Miosinas/metabolismo , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia
11.
J Mol Biol ; 379(3): 443-56, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18462751

RESUMEN

The relay domain of myosin is hypothesized to function as a communication pathway between the nucleotide-binding site, actin-binding site and the converter domain. In Drosophila melanogaster, a single myosin heavy chain gene encodes three alternative relay domains. Exon 9a encodes the indirect flight muscle isoform (IFI) relay domain, whereas exon 9b encodes one of the embryonic body wall isoform (EMB) relay domains. To gain a better understanding of the function of the relay domain and the differences imparted by the IFI and the EMB versions, we constructed two transgenic Drosophila lines expressing chimeric myosin heavy chains in indirect flight muscles lacking endogenous myosin. One expresses the IFI relay domain in the EMB backbone (EMB-9a), while the second expresses the EMB relay domain in the IFI backbone (IFI-9b). Our studies reveal that the EMB relay domain is functionally equivalent to the IFI relay domain when it is substituted into IFI. Essentially no differences in ATPase activity, actin-sliding velocity, flight ability at room temperature or muscle structure are observed in IFI-9b compared to native IFI. However, when the EMB relay domain is replaced with the IFI relay domain, we find a 50% reduction in actin-activated ATPase activity, a significant increase in actin affinity, abolition of actin sliding, defects in myofibril assembly and rapid degeneration of muscle structure compared to EMB. We hypothesize that altered relay domain conformational changes in EMB-9a impair intramolecular communication with the EMB-specific converter domain. This decreases transition rates involving strongly bound actomyosin states, leading to a reduced ATPase rate and loss of actin motility.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Músculo Esquelético/metabolismo , Miofibrillas/ultraestructura , Miosinas/metabolismo , Isoformas de Proteínas/metabolismo , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Modelos Moleculares , Datos de Secuencia Molecular , Músculo Esquelético/ultraestructura , Miofibrillas/metabolismo , Miosinas/química , Miosinas/genética , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA