RESUMEN
While the role of transcription factors and coactivators in controlling enhancer activity and chromatin structure linked to gene expression is well established, the involvement of corepressors is not. Using inflammatory macrophage activation as a model, we investigate here a corepressor complex containing GPS2 and SMRT both genome-wide and at the Ccl2 locus, encoding the chemokine CCL2 (MCP-1). We report that corepressors co-occupy candidate enhancers along with the coactivators CBP (H3K27 acetylase) and MED1 (mediator) but act antagonistically by repressing eRNA transcription-coupled H3K27 acetylation. Genome editing, transcriptional interference, and cistrome analysis reveals that apparently related enhancer and silencer elements control Ccl2 transcription in opposite ways. 4C-seq indicates that corepressor depletion or inflammatory signaling functions mechanistically similarly to trigger enhancer activation. In ob/ob mice, adipose tissue macrophage-selective depletion of the Ccl2 enhancer-transcribed eRNA reduces metaflammation. Thus, the identified corepressor-eRNA-chemokine pathway operates in vivo and suggests therapeutic opportunities by targeting eRNAs in immuno-metabolic diseases.
Asunto(s)
Quimiocina CCL2/genética , Proteínas Co-Represoras/genética , Elementos de Facilitación Genéticos , Péptidos y Proteínas de Señalización Intracelular/genética , Co-Represor 2 de Receptor Nuclear/genética , Obesidad/genética , Elementos Silenciadores Transcripcionales , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Animales , Sistemas CRISPR-Cas , Quimiocina CCL2/inmunología , Proteínas Co-Represoras/inmunología , Edición Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/inmunología , Histonas/genética , Histonas/inmunología , Humanos , Péptidos y Proteínas de Señalización Intracelular/inmunología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Masculino , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/inmunología , Ratones , Ratones Obesos , Co-Represor 2 de Receptor Nuclear/inmunología , Obesidad/inmunología , Obesidad/patología , Células RAW 264.7 , ARN no Traducido/genética , ARN no Traducido/inmunología , Transducción de SeñalRESUMEN
Depot medroxyprogesterone acetate (DMPA) is an injectable hormonal contraceptive used by millions of women worldwide. However, experimental studies have associated DMPA use with genital epithelial barrier disruption and mucosal influx of human immunodeficiency virus (HIV) target cells. We explored the underlying molecular mechanisms of these findings. Ectocervical biopsies and cervicovaginal lavage (CVL) specimens were collected from HIV-seronegative Kenyan sex workers using DMPA (n = 32) or regularly cycling controls (n = 64). Tissue samples were assessed by RNA-sequencing and quantitative imaging analysis, whereas protein levels were measured in CVL samples. The results suggested a DMPA-associated upregulation of genes involved in immune regulation, including genes associated with cytokine-mediated signaling and neutrophil-mediated immunity. A transcription factor analysis further revealed DMPA-associated upregulation of RELA and NFKB1 which are involved in several immune activation pathways. Several genes significantly downregulated in the DMPA versus the control group were involved in epithelial structure and function, including genes encoding keratins, small proline-rich proteins, and cell-cell adhesion proteins. Pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development, including keratinization and cornification processes. The cervicovaginal microbiome composition (Lactobacillus dominant and non-Lactobacillus dominant) had no overall interactional impact on the DMPA associated tissue gene expression. Imaging analysis verified that DMPA use was associated with an impaired epithelial layer as illustrated by staining for the selected epithelial junction proteins E-cadherin, desmoglein-1 and claudin-1. Additional staining for CD4+ cells revealed a more superficial location of these cells in the ectocervical epithelium of DMPA users versus controls. Altered protein levels of SERPINB1 and ITIH2 were further observed in the DMPA group. Identification of specific impaired epithelial barrier structures at the gene expression level, which were verified at the functional level by tissue imaging analysis, illustrates mechanisms by which DMPA adversely may affect the integrity of the genital mucosa.
Asunto(s)
Anticonceptivos Femeninos , Infecciones por VIH , Serpinas , Cuello del Útero , Anticonceptivos Femeninos/efectos adversos , Femenino , Humanos , Kenia , Acetato de Medroxiprogesterona/efectos adversosRESUMEN
Ovaries are central to development, fertility, and reproduction of women. A particularly interesting feature of ovaries is their accelerated aging compared to other tissues, leading to loss of function far before other organs senesce. The limited pool of ovarian follicles is generated before birth and once exhausted, menopause will inevitably commence around the age of 50 years marking the end of fertility. Yet, there are reports suggesting the presence of germline stem cells and neo-oogenesis in adult human ovaries. These observations have fueled a long debate, created experimental fertility treatments, and opened business opportunities. Our recent analysis of cell types in the ovarian cortex of women of fertile age could not find evidence of germline stem cells. Like before, our work has been met with critique suggesting methodological shortcomings. We agree that excellence starts with methods and welcome discussion on the pros and cons of different protocols. In this commentary, we discuss the recent re-interpretation of our work.
Asunto(s)
Oogénesis , Ovario , Adulto , Femenino , Humanos , Persona de Mediana Edad , Oogénesis/fisiología , Folículo Ovárico , Células Germinativas , Células Madre/metabolismoRESUMEN
Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
Asunto(s)
Dopamina , Esquizofrenia , Animales , Ratones , Dopamina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Esquizofrenia/metabolismo , Cuerpo Estriado/metabolismo , Transducción de SeñalRESUMEN
Colorectal cancer (CRC) is the third leading cause of cancer death in the western world. In women, menopausal hormone therapy has been shown to reduce CRC incidence by 20%. Studies demonstrate that estrogen activating estrogen receptor beta (ERß) protects against CRC. ERß is a nuclear receptor that regulates gene expression through interactions with the chromatin. This molecular mechanism is, however, not well characterized in colon. Here, we present for the first time, the cistrome of ERß in different colon cancer cell lines. We use cell lines engineered to express ERß, optimize and validate an ERß antibody for chromatin-immunoprecipitation (ChIP), and perform ChIP-Seq. We identify key binding motifs, including ERE, AP-1, and TCF sites, and we determine enrichment of binding to cis-regulatory chromatin sites of genes involved in tumor development, cell migration, cell adhesion, apoptosis, and Wnt signaling pathways. We compare the corresponding cistromes of colon and breast cancer and find that they are conserved for about a third of genes, including GREB1, but that ERß tethering to TCF and KLF family motifs is characteristic for colon. We exemplify upregulation of putative CRC tumor suppressor gene CST5 where ERß in colon cells binds to cis-regulatory regions nearby (-351 bp) the transcriptional start site. Our work provides a foundation for understanding the mechanism of action of ERß in CRC prevention.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Cromatina/metabolismo , Neoplasias del Colon/patología , Receptor beta de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Genoma Humano , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Movimiento Celular , Proliferación Celular , Cromatina/genética , Inmunoprecipitación de Cromatina , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Receptor beta de Estrógeno/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Células Tumorales CultivadasRESUMEN
BACKGROUND: The transcription factor pleomorphic adenoma gene 1 (PLAG1) is required for male fertility. Mice deficient in PLAG1 exhibit decreased sperm motility and abnormal epididymal tubule elongation and coiling, indicating impaired sperm maturation during epididymal transit. However, the downstream transcriptomic profile of the Plag1 knockout (KO; Plag1-/- ) murine epididymis is currently unknown. RESULTS: In this study, the PLAG1-dependent epididymal transcriptome was characterised using RNA sequencing. Several genes important for the control of sperm maturation, motility, capacitation and the acrosome reaction were dysregulated in Plag1-/- mice. Surprisingly, several cell proliferation genes were upregulated, and Ki67 analysis indicated that cell proliferation is aberrantly upregulated in the cauda epididymis stroma of Plag1-/- mice. Gene ontology analysis showed an overall upregulation of genes encoding extracellular matrix components, and an overall downregulation of genes encoding metalloendopeptidases in the epididymides from Plag1-/- mice. CONCLUSION: Together, these results suggest a defect in the epididymal extracellular matrix in Plag1-/- mice. These results imply that in addition to maintaining epididymal integrity directly, PLAG1 may also regulate several genes involved in the regulation of sperm maturation and capacitation. Moreover, PLAG1 may also be involved in regulating tissue homeostasis and ensuring proper structure and maintenance of the extracellular matrix in the epididymis.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epidídimo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Maduración del Esperma/genética , Transcriptoma , Animales , Proteínas de Unión al ADN/genética , Proteínas de la Matriz Extracelular/genética , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones NoqueadosRESUMEN
The orphan receptor LRH-1 and the oxysterol receptors LXRalpha and LXRbeta are established transcriptional regulators of lipid metabolism that appear to control inflammatory processes. Here, we investigate the anti-inflammatory actions of these nuclear receptors in the hepatic acute phase response (APR). We report that selective synthetic agonists induce SUMOylation-dependent recruitment of either LRH-1 or LXR to hepatic APR promoters and prevent the clearance of the N-CoR corepressor complex upon cytokine stimulation. Investigations of the APR in vivo, using LXR knockout mice, indicate that the anti-inflammatory actions of LXR agonists are triggered selectively by the LXRbeta subtype. We further find that hepatic APR responses in small ubiquitin-like modifier-1 (SUMO-1) knockout mice are increased, which is due in part to diminished LRH-1 action at APR promoters. Finally, we provide evidence that the metabolically important coregulator GPS2 functions as a hitherto unrecognized transrepression mediator of interactions between SUMOylated nuclear receptors and the N-CoR corepressor complex. Our study extends the knowledge of anti-inflammatory mechanisms and pathways directed by metabolic nuclear receptor-corepressor networks to the control of the hepatic APR, and implies alternative pharmacological strategies for the treatment of human metabolic diseases associated with inflammation.
Asunto(s)
Reacción de Fase Aguda/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Hígado/inmunología , Receptores Nucleares Huérfanos/inmunología , Receptores Citoplasmáticos y Nucleares/inmunología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/inmunología , Animales , Antiinflamatorios/inmunología , Células COS , Chlorocebus aethiops , Femenino , Regulación de la Expresión Génica , Células HeLa , Humanos , Receptores X del Hígado , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Transcriptional coregulators, rather than ligand signals, are suspected to confer context and pathway specificity to nuclear receptor signaling, but the identity of such specifying coregulators and the underlying molecular mechanisms remain largely enigmatic. Here we address this issue in metabolic oxysterol receptor LXR pathways and describe the selective requirement of GPS2 for ABCG1 cholesterol transporter gene transcription and cholesterol efflux from macrophages. We implicate GPS2 in facilitating LXR recruitment to an ABCG1-specific promoter/enhancer unit upon ligand activation and identify functional links to histone H3K9 demethylation. We further describe fundamental differences between ABCG1 and ABCA1 with regard to GPS2 in relation to other coregulators, which are likely to apply to additional LXR-regulated genes. Our work identifies a coregulator-dependent epigenetic mechanism governing the access of a nuclear receptor to communicating regulatory regions in the genome. The pathway and coregulator selectivity of this mechanism implies pharmacological possibilities for the development of selective LXR agonists.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Epistasis Genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Receptores X del Hígado , Macrófagos/citología , Macrófagos/metabolismo , Receptores Nucleares Huérfanos , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos HíbridosRESUMEN
Exposure to persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), has historically been linked to population collapses in wildlife. Despite international regulations, these legacy chemicals are still currently detected in women of reproductive age, and their levels correlate with reduced ovarian reserve, longer time-to-pregnancy, and higher risk of infertility. However, the specific modes of action underlying these associations remain unclear. Here, we examined the effects of five commonly occurring POPs - hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (DDE), 2,3,3',4,4',5-hexachlorobiphenyl (PCB156), 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180), perfluorooctane sulfonate (PFOS) - and their mixture on human ovaries in vitro. We exposed human ovarian cancer cell lines COV434, KGN, and PA1 as well as primary ovarian cells for 24 h, and ovarian tissue containing unilaminar follicles for 6 days. RNA-sequencing of samples exposed to concentrations covering epidemiologically relevant levels revealed significant gene expression changes related to central energy metabolism in the exposed cells, indicating glycolysis, oxidative phosphorylation, fatty acid metabolism, and reactive oxygen species as potential shared targets of POP exposures in ovarian cells. Alpha-enolase (ENO1), lactate dehydrogenase A (LDHA), cytochrome C oxidase subunit 4I1 (COX4I1), ATP synthase F1 subunit alpha (ATP5A), and glutathione peroxidase 4 (GPX4) were validated as targets through qPCR in additional cell culture experiments in KGN. In ovarian tissue cultures, we observed significant effects of exposure on follicle growth and atresia as well as protein expression. All POP exposures, except PCB180, decreased unilaminar follicle proportion and increased follicle atresia. Immunostaining confirmed altered expression of LDHA, ATP5A, and GPX4 in the exposed tissues. Moreover, POP exposures modified ATP production in KGN and tissue culture. In conclusion, our results demonstrate the disruption of cellular energy metabolism as a novel mode of action underlying POP-mediated interference of follicle growth in human ovaries.
Asunto(s)
Metabolismo Energético , Fluorocarburos , Ovario , Contaminantes Orgánicos Persistentes , Humanos , Femenino , Ovario/efectos de los fármacos , Ovario/metabolismo , Metabolismo Energético/efectos de los fármacos , Fluorocarburos/toxicidad , Homeostasis/efectos de los fármacos , Línea Celular Tumoral , Bifenilos Policlorados/toxicidad , Diclorodifenil Dicloroetileno/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Hexaclorobenceno/toxicidadRESUMEN
Phthalates are found in everyday items like plastics and personal care products. There is an increasing concern that continuous exposure can adversely affect female fertility. However, experimental data are lacking to establish causal links between exposure and disease in humans. To address this gap, we tested the effects of a common phthalate metabolite, mono-(2-ethylhexyl) phthalate (MEHP), on adult human ovaries in vitro using an epidemiologically determined human-relevant concentration range (2.05â¯nM - 20.51â¯mM). Histomorphological assessments, steroid and cytokine measurements were performed on human ovarian tissue exposed to MEHP for 7 days in vitro. Cell viability and gene expression profile were investigated following 7 days of MEHP exposure using the human granulosa cancer cell lines KGN, and COV434, the germline tumor cell line PA-1, and human ovarian primary cells. Selected differentially expressed genes (DEGs) were validated by RT-qPCR and immunofluorescence in human ovarian tissue. MEHP exposure reduced follicular growth (20.51â¯nM) and increased follicular degeneration (20.51â¯mM) in ovarian tissue, while not affecting steroid and cytokine production. Out of the 691 unique DEGs identified across all the cell types and concentrations, CSRP2 involved in cytoskeleton organization and YWHAE as well as CTNNB1 involved in the Hippo pathway, were chosen for further validation. CSRP2 was upregulated and CTNNB1 downregulated in both ovarian tissue and cells, whereas YWHAE was downregulated in cells only. In summary, one-week MEHP exposure of human ovarian tissue can perturb the development and survival of human follicles through mechanisms likely involving dysregulation of cytoskeleton organization and Hippo pathway.
Asunto(s)
Supervivencia Celular , Dietilhexil Ftalato , Folículo Ovárico , Humanos , Femenino , Supervivencia Celular/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Folículo Ovárico/patología , Dietilhexil Ftalato/análogos & derivados , Dietilhexil Ftalato/toxicidad , Adulto , Línea Celular Tumoral , Citocinas/metabolismo , Citocinas/genéticaRESUMEN
STUDY QUESTION: What is the effect of the chemical in vitro activation (cIVA) protocol compared with fragmentation only (Frag, also known as mechanical IVA) on gene expression, follicle activation and growth in human ovarian tissue in vitro? SUMMARY ANSWER: Although histological assessment shows that cIVA significantly increases follicle survival and growth compared to Frag, both protocols stimulate extensive and nearly identical transcriptomic changes in cultured tissue compared to freshly collected ovarian tissue, including marked changes in energy metabolism and inflammatory responses. WHAT IS KNOWN ALREADY: Treatments based on cIVA of the phosphatase and tensin homolog (PTEN)-phosphatidylinositol 3-kinase (PI3K) pathway in ovarian tissue followed by auto-transplantation have been administered to patients with refractory premature ovarian insufficiency (POI) and resulted in live births. However, comparable effects with mere tissue fragmentation have been shown, questioning the added value of chemical stimulation that could potentially activate oncogenic responses. STUDY DESIGN SIZE DURATION: Fifty-nine ovarian cortical biopsies were obtained from consenting women undergoing elective caesarean section (C-section). The samples were fragmented for culture studies. Half of the fragments were exposed to bpV (HOpic)+740Y-P (Frag+cIVA group) during the first 24 h of culture, while the other half were cultured with medium only (Frag group). Subsequently, both groups were cultured with medium only for an additional 6 days. Tissue and media samples were collected for histological, transcriptomic, steroid hormone, and cytokine/chemokine analyses at various time points. PARTICIPANTS/MATERIALS SETTING METHODS: Effects on follicles were evaluated by counting and scoring serial sections stained with hematoxylin and eosin before and after the 7-day culture. Follicle function was assessed by quantification of steroids by ultra-performance liquid chromatography tandem-mass spectrometry at different time points. Cytokines and chemokines were measured by multiplex assay. Transcriptomic effects were measured by RNA-sequencing (RNA-seq) of the tissue after the initial 24-h culture. Selected differentially expressed genes (DEGs) were validated by quantitative PCR and immunofluorescence in cultured ovarian tissue as well as in KGN cell (human ovarian granulosa-like tumor cell line) culture experiments. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to the Frag group, the Frag+cIVA group exhibited a significantly higher follicle survival rate, increased numbers of secondary follicles, and larger follicle sizes. Additionally, the tissue in the Frag+cIVA group produced less dehydroepiandrosterone compared to Frag. Cytokine measurement showed a strong inflammatory response at the start of the culture in both groups. The RNA-seq data revealed modest differences between the Frag+cIVA and Frag groups, with only 164 DEGs identified using a relaxed cut-off of false discovery rate (FDR) <0.1. Apart from the expected PI3K-protein kinase B (Akt) pathway, cIVA also regulated pathways related to hypoxia, cytokines, and inflammation. In comparison to freshly collected ovarian tissue, gene expression in general was markedly affected in both the Frag+cIVA and Frag groups, with a total of 3119 and 2900 DEGs identified (FDR < 0.001), respectively. The top enriched gene sets in both groups included several pathways known to modulate follicle growth such as mammalian target of rapamycin (mTOR)C1 signaling. Significant changes compared to fresh tissue were also observed in the expression of genes encoding for steroidogenesis enzymes and classical granulosa cell markers in both groups. Intriguingly, we discovered a profound upregulation of genes related to glycolysis and its upstream regulator in both Frag and Frag+cIVA groups, and these changes were further boosted by the cIVA treatment. Cell culture experiments confirmed glycolysis-related genes as direct targets of the cIVA drugs. In conclusion, cIVA enhances follicle growth, as expected, but the mechanisms may be more complex than PI3K-Akt-mTOR alone, and the impact on function and quality of the follicles after the culture period remains an open question. LARGE SCALE DATA: Data were deposited in the GEO data base, accession number GSE234765. The code for sequencing analysis can be found in https://github.com/tialiv/IVA_project. LIMITATIONS REASONS FOR CAUTION: Similar to the published IVA protocols, the first steps in our study were performed in an in vitro culture model where the ovarian tissue was isolated from the regulation of hypothalamic-pituitary-ovarian axis. Further in vivo experiments will be needed, for example in xeno-transplantation models, to explore the long-term impacts of the discovered effects. The tissue collected from patients undergoing C-section may not be comparable to tissue of patients with POI. WIDER IMPLICATIONS OF THE FINDINGS: The general impact of fragmentation and short (24 h) in vitro culture on gene expression in ovarian tissue far exceeded the effects of cIVA. Yet, follicle growth was stimulated by cIVA, which may suggest effects on specific cell populations that may be diluted in bulk RNA-seq. Nevertheless, we confirmed the impact of cIVA on glycolysis using a cell culture model, suggesting impacts on cellular signaling beyond the PI3K pathway. The profound changes in inflammation and glycolysis following fragmentation and culture could contribute to follicle activation and loss in ovarian tissue culture, as well as in clinical applications, such as fertility preservation by ovarian tissue auto-transplantation. STUDY FUNDING/COMPETING INTERESTS: This study was funded by research grants from European Union's Horizon 2020 Research and Innovation Programme (Project ERIN No. 952516, FREIA No. 825100), Swedish Research Council VR (2020-02132), StratRegen funding from Karolinska Institutet, KI-China Scholarship Council (CSC) Programme and the Natural Science Foundation of Hunan (2022JJ40782). International Iberian Nanotechnology Laboratory Research was funded by the European Union's H2020 Project Sinfonia (857253) and SbDToolBox (NORTE-01-0145-FEDER-000047), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. No competing interests are declared.
RESUMEN
Phthalates are endocrine disrupting chemicals (EDCs) found in common consumer products such as soft plastics and cosmetics. Although the knowledge regarding the adverse effects of phthalates on female fertility are accumulating, information on the hormone sensitive endometrium is still scarce. Here, we studied the effects of phthalates on endometrial cell proliferation and gene expression. Human endometrial primary epithelial and stromal cells were isolated from healthy fertile-aged women (n=3), and were compared to endometrial cell lines T-HESC and Ishikawa. Three different epidemiologically relevant phthalate mixtures were used, defined by urine samples in the Midlife Women Health Study (MWHS) cohort. Mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was used as a single phthalate control. Cells were harvested for proliferation testing and transcriptomic analyses after 24â¯h exposure. Even though all cell models responded differently to the phthalate exposures, many overlapping differentially expressed genes (DEGs, FDR<0.1), related to cell adhesion, cytoskeleton and mitochondria were found in all cell types. The qPCR analysis confirmed that MEHHP significantly affected cell adhesion gene vinculin (VCL) and NADH:ubiquinone oxidoreductase subunit B7 (NDUFB7), important for oxidative phosphorylation. Benchmark dose modelling showed that MEHHP had significant concentration-dependent effects on cytoskeleton gene actin-beta (ACTB). In conclusion, short 24â¯h phthalate exposures significantly altered gene expression cell-specifically in human endometrial cells, with six shared DEGs. The mixture effects were similar to those of MEHHP, suggesting MEHHP could be the main driver in the mixture. Impact of phthalate exposures on endometrial functions including receptivity should be addressed.
Asunto(s)
Proliferación Celular , Citoesqueleto , Disruptores Endocrinos , Endometrio , Mitocondrias , Ácidos Ftálicos , Humanos , Femenino , Endometrio/efectos de los fármacos , Endometrio/citología , Endometrio/metabolismo , Citoesqueleto/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Adulto , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Línea Celular , Células Cultivadas , Contaminantes Ambientales/toxicidad , Expresión Génica/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Persona de Mediana EdadRESUMEN
Defects in adipocyte lipolysis drive multiple aspects of cardiometabolic disease, but the transcriptional framework controlling this process has not been established. To address this, we performed a targeted perturbation screen in primary human adipocytes. Our analyses identified 37 transcriptional regulators of lipid mobilization, which we classified as (i) transcription factors, (ii) histone chaperones, and (iii) mRNA processing proteins. On the basis of its strong relationship with multiple readouts of lipolysis in patient samples, we performed mechanistic studies on one hit, ZNF189, which encodes the zinc finger protein 189. Using mass spectrometry and chromatin profiling techniques, we show that ZNF189 interacts with the tripartite motif family member TRIM28 and represses the transcription of an adipocyte-specific isoform of phosphodiesterase 1B (PDE1B2). The regulation of lipid mobilization by ZNF189 requires PDE1B2, and the overexpression of PDE1B2 is sufficient to attenuate hormone-stimulated lipolysis. Thus, our work identifies the ZNF189-PDE1B2 axis as a determinant of human adipocyte lipolysis and highlights a link between chromatin architecture and lipid mobilization.
Asunto(s)
Adipocitos , Movilización Lipídica , Humanos , Adipocitos/metabolismo , Lipólisis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Cromatina/metabolismoRESUMEN
Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Monocitos , Humanos , Animales , Ratones , Niño , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Diferenciación CelularRESUMEN
For most lymphomas, including diffuse large B-cell lymphoma (DLBCL), the male incidence is higher, and the prognosis is worse compared to females. The reasons are unclear; however, epidemiological and experimental data suggest that estrogens are involved. With this in mind, we analyzed gene expression data from a publicly available cohort (EGAD00001003600) of 746 DLBCL samples based on RNA sequencing. We found 1293 genes to be differentially expressed between males and females (adj. p-value < 0.05). Few autosomal genes and pathways showed common sex-regulated expression between germinal center B-cell (GCB) and activated B-cell lymphoma (ABC) DLBCL. Analysis of differentially expressed genes between pre- vs. postmenopausal females identified 208 GCB and 345 ABC genes, with only 5 being shared. When combining the differentially expressed genes between females vs. males and pre- vs. postmenopausal females, nine putative estrogen-regulated genes were identified in ABC DLBCL. Two of them, NR4A2 and MUC5B, showed induced and repressed expression, respectively. Interestingly, NR4A2 has been reported as a tumor suppressor in lymphoma. We show that ABC DLBCL females with a high NR4A2 expression showed better survival. Inversely, MUC5B expression causes a more malignant phenotype in several cancers. NR4A2 and MUC5B were confirmed to be estrogen-regulated when the ABC cell line U2932 was grafted to mice. The results demonstrate sex- and female reproductive age-dependent differences in gene expression between DLBCL subtypes, likely due to estrogens. This may contribute to the sex differences in incidence and prognosis.
RESUMEN
Endocrine disrupting chemicals (EDCs) are raising concerns about adverse effects on fertility in women. However, there is a lack of information regarding mechanisms and effects in humans. Our study aims to identify mechanisms of endocrine disruption using two EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ)1. Human ovarian cortical tissue obtained from Caesarean section patients was exposed to 10-9 M - 10-5 M KTZ and 10-10 M - 10-6 M DES in vitro for 6 days. Follicle survival and growth were studied via histology analysis and liquid-chromatography-mass spectrometry-based steroid quantification. RNA-sequencing was performed on COV434, KGN, and primary ovarian cells that were exposed for 24 h. Significantly lower unilaminar follicle densities were observed in DES 10-10 M group, whereas low KTZ exposure reduced secondary follicle density. KTZ 10-5 M reduced levels of pregnenolone and progesterone. RNA-sequencing revealed that 445 and 233 differentially expressed genes (false discovery rate < 0.1) altogether in DES and KTZ exposed groups. Gene set variation analysis showed that both chemicals modulated pathways that are important for folliculogenesis and steroidogenesis. We selected stearoyl-CoA desaturase (SCD) and 7-dehydrocholesterol reductase (DHCR7) for further validation. Up-regulation of both genes in response to KTZ was confirmed by qPCR and in situ RNA hybridization. Further validation with immunofluorescence focused on the expression of SCD in growing follicles in exposed ovarian tissue. In conclusion, SCD may serve as a potential novel human-relevant biomarker of EDC exposure and effects on ovaries.
Asunto(s)
Disruptores Endocrinos , Ovario , Humanos , Embarazo , Femenino , Cesárea , Folículo Ovárico , Progesterona , Cetoconazol/farmacología , ARN/metabolismo , ARN/farmacología , Disruptores Endocrinos/metabolismoRESUMEN
Chemical health risk assessment is based on single chemicals, but humans and wildlife are exposed to extensive mixtures of industrial substances and pharmaceuticals. Such exposures are life-long and correlate with multiple morbidities, including infertility. How combinatorial effects of chemicals should be handled in hazard characterization and risk assessment are open questions. Further, test systems are missing for several relevant health outcomes including reproductive health and fertility in women. Here, our aim was to screen multiple ovarian cell models for phthalate induced effects to identify biomarkers of exposure. We used an epidemiological cohort study to define different phthalate mixtures for in vitro testing. The mixtures were then tested in five cell models representing ovarian granulosa or stromal cells, namely COV434, KGN, primary human granulosa cells, primary mouse granulosa cells, and primary human ovarian stromal cells. Exposures at epidemiologically relevant levels did not markedly elicit cytotoxicity or affect steroidogenesis in short 24-hour exposure. However, significant effects on gene expression were identified by RNA-sequencing. Altogether, the exposures changed the expression of 124 genes on the average (9-479 genes per exposure) in human cell models, without obvious concentration or mixture-dependent effects on gene numbers. The mixtures stimulated distinct changes in different cell models. Despite differences, our analyses suggest commonalities in responses towards phthalates, which forms a starting point for follow-up studies on identification and validation of candidate biomarkers that could be developed to novel assays for regulatory testing or even into clinical tests.
Asunto(s)
Disruptores Endocrinos , Ácidos Ftálicos , Animales , Ratones , Humanos , Femenino , Ovario , Estudios de Cohortes , Ácidos Ftálicos/toxicidad , Fertilidad , Disruptores Endocrinos/toxicidadRESUMEN
Estrogen regulates transcription through two nuclear receptors, ERα and ERß, in a tissue and cellular-dependent manner. Both the receptors bind estrogen and activate transcription through direct or indirect interactions with DNA. Revealing their interactions with the chromatin is key to understanding their transcriptional activities and their biological functions. Chromatin-immunoprecipitation followed by sequencing (ChIP-Seq) is a powerful technique to map protein-DNA interactions at precise genomic locations. The genome-wide binding of ERα has been extensively studied. Similar studies of ERß, however, have been more difficult, in part due to a lack of endogenous expression in cell lines and lack of specific antibodies. In this chapter, we provide an optimized stepwise ChIP protocol for a well-validated ERß antibody, which is applicable for ChIP-Seq analysis of cell lines with exogenous expression of ERß.
Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Receptor beta de Estrógeno , Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , EstrógenosRESUMEN
Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-to-female incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor ß (ESR2). To study the ESR2 effects on MCL progression, MCL cells sensitive and resistant to the Bruton tyrosine kinase inhibitor ibrutinib were grafted to mice and treated with the ESR2-selective agonist diarylpropionitrile (DPN). The results showed that the DPN treatment of mice grafted with both ibrutinib-sensitive and -resistant MCL tumors resulted in impaired tumor progression. To identify the signaling pathways involved in the impaired tumor progression following ESR2 agonist treatment, the transcriptome and ESR2 binding to target genes were investigated by genome-wide chromatin immunoprecipitation in Granta-519 MCL tumors. DPN-regulated genes were enriched in several biological processes that included cell-cell adhesion, endothelial-mesenchymal transition, nuclear factor-kappaB signaling, vasculogenesis, lymphocyte proliferation, and apoptosis. In addition, downregulation of individual genes, such as SOX11 and MALAT1, that play a role in MCL progression was also observed. Furthermore, the data suggested an interplay between the lymphoma cells and the tumor microenvironment in response to the ESR2 agonist. In conclusion, the results clarify the mechanisms by which estrogens, via ESR2, impair MCL tumor progression and provide a possible explanation for the sex-dependent difference in incidence. Furthermore, targeting ESR2 with a selective agonist may be an additional option when considering the treatment of both ibrutinib-sensitive and -resistant MCL tumors.