RESUMEN
Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.
Asunto(s)
Antituberculosos , Modelos Animales de Enfermedad , Macrófagos , Mycobacterium tuberculosis , Oxadiazoles , Tuberculosis , Zinc , Animales , Oxadiazoles/farmacología , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Zinc/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Tuberculosis/tratamiento farmacológico , Ratones Endogámicos C57BL , Femenino , Sinergismo FarmacológicoRESUMEN
Resistance to anti-microbial agents is a world-wide health threat. Thus there is an urgent need for new treatments. An alternative approach to disarm pathogens consists in developing drugs targeting epigenetic modifiers. Bacterial pathogens can manipulate epigenetic regulatory systems of the host to bypass defences to proliferate and survive. One example is Legionella pneumophila, a Gram-negative intracellular pathogen that targets host chromatin with a specific, secreted bacterial SET-domain methyltransferase named RomA. This histone methyltransferase specifically methylates H3K14 during infection and is responsible for changing the host epigenetic landscape upon L. pneumophila infection. To inhibit RomA activity during infection, we developed a reliable high-content imaging screening assay, which we used to screen an in-house chemical library developed to inhibit DNA and histone methyltransferases. This assay was optimised using monocytic leukemic THP-1 cells differentiated into macrophages infected with L. pneumophila in a 96- or 384-well plate format using the Opera Phenix® (Perkin Elmer) confocal microscope, combined with Columbus™ software for automated image acquisition and analysis. H3K14 methylation was followed in infected, single cells and cytotoxicity was assessed in parallel. A first pilot screening of 477 compounds identified a potential starting point for inhibitors of H3K14 methylation.
RESUMEN
Outbreaks of West Nile virus (WNV) occur periodically, affecting both human and equine populations. There are no vaccines for humans, and those commercialised for horses do not have sufficient coverage. Specific antiviral treatments do not exist. Many drug discovery studies have been conducted, but since rodent or primate cell lines are normally used, results cannot always be transposed to horses. There is thus a need to develop relevant equine cellular models. Here, we used induced pluripotent stem cells to develop a new in vitro model of WNV-infected equine brain cells suitable for microplate assay, and assessed the cytotoxicity and antiviral activity of forty-one chemical compounds. We found that one nucleoside analog, 2'C-methylcytidine, blocked WNV infection in equine brain cells, whereas other compounds were either toxic or ineffective, despite some displaying anti-viral activity in human cell lines. We also revealed an unexpected proviral effect of statins in WNV-infected equine brain cells. Our results thus identify a potential lead for future drug development and underscore the importance of using a tissue- and species-relevant cellular model for assessing the activity of antiviral compounds.
Asunto(s)
Enfermedades de los Caballos , Células Madre Pluripotentes Inducidas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Caballos , Humanos , Fiebre del Nilo Occidental/veterinaria , Fiebre del Nilo Occidental/epidemiología , Encéfalo , Antivirales/farmacología , Antivirales/uso terapéutico , Enfermedades de los Caballos/tratamiento farmacológicoRESUMEN
The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.
Asunto(s)
Listeria monocytogenes , Listeriosis , Proteínas Bacterianas , Citoplasma , Citosol , Proteínas Hemolisinas , Humanos , Listeriosis/microbiología , Vacuolas/microbiología , Vacuolas/fisiologíaRESUMEN
OBJECTIVE: Helicobacter pylori (Hp) is a major risk factor for gastric cancer (GC). Hp promotes DNA damage and proteasomal degradation of p53, the guardian of genome stability. Hp reduces the expression of the transcription factor USF1 shown to stabilise p53 in response to genotoxic stress. We investigated whether Hp-mediated USF1 deregulation impacts p53-response and consequently genetic instability. We also explored in vivo the role of USF1 in gastric carcinogenesis. DESIGN: Human gastric epithelial cell lines were infected with Hp7.13, exposed or not to a DNA-damaging agent camptothecin (CPT), to mimic a genetic instability context. We quantified the expression of USF1, p53 and their target genes, we determined their subcellular localisation by immunofluorescence and examined USF1/p53 interaction. Usf1-/- and INS-GAS mice were used to strengthen the findings in vivo and patient data examined for clinical relevance. RESULTS: In vivo we revealed the dominant role of USF1 in protecting gastric cells against Hp-induced carcinogenesis and its impact on p53 levels. In vitro, Hp delocalises USF1 into foci close to cell membranes. Hp prevents USF1/p53 nuclear built up and relocates these complexes in the cytoplasm, thereby impairing their transcriptional function. Hp also inhibits CPT-induced USF1/p53 nuclear complexes, exacerbating CPT-dependent DNA damaging effects. CONCLUSION: Our data reveal that the depletion of USF1 and its de-localisation in the vicinity of cell membranes are essential events associated to the genotoxic activity of Hp infection, thus promoting gastric carcinogenesis. These findings are also of clinical relevance, supporting USF1 expression as a potential marker of GC susceptibility.
Asunto(s)
Carcinogénesis , Mucosa Gástrica , Infecciones por Helicobacter/metabolismo , Helicobacter pylori , Neoplasias Gástricas , Proteína p53 Supresora de Tumor/genética , Factores Estimuladores hacia 5'/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular , Daño del ADN , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Inestabilidad Genómica , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidad , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiología , UbiquitinaciónRESUMEN
The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.
Asunto(s)
Actinas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Quinasa I-kappa B/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Línea Celular , Células Cultivadas , Endosomas/metabolismo , Humanos , Quinasa I-kappa B/genética , Sinapsis Inmunológicas/metabolismo , Interleucina-2/metabolismo , Células Jurkat , ARN Interferente Pequeño/genéticaRESUMEN
Major depressive disorder is a complex multifactorial condition with a so far poorly characterized underlying pathophysiology. Consequently, the available treatments are far from satisfactory as it is estimated that up to 30% of patients are resistant to conventional treatment. Recent comprehensive evidence has been accumulated which suggests that inflammation may be implied in the etiology of this disease. Here we investigated ketamine as an innovative treatment strategy due to its immune-modulating capacities. In a murine model of LPS-induced depressive-like behavior we demonstrated that a single dose of ketamine restores the LPS-induced depressive-like alterations. These behavioral effects are associated with i/ a reversal of anxiety and reduced self-care, ii/ a decrease in parenchymal cytokine production, iii/ a modulation of the microglial reactivity and iv/ a decrease in microglial quinolinic acid production that is correlated with plasmatic peripheral production. In a translational approach, we show that kynurenic acid to quinolinic acid ratio is a predictor of ketamine response in treatment-resistant depressed patients and that the reduction in quinolinic acid after a ketamine infusion is a predictor of the reduction in MADRS score. Our results suggest that microglia is a key therapeutic target and that quinolinic acid is a biomarker of ketamine response in major depressive disorder.
Asunto(s)
Depresión/metabolismo , Microglía/metabolismo , Ácido Quinolínico/metabolismo , Animales , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/tratamiento farmacológico , Biomarcadores Farmacológicos , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Ketamina/metabolismo , Ketamina/farmacología , Ácido Quinurénico/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacosRESUMEN
BACKGROUND: Infectious diseases are still a leading cause of death and, with the emergence of drug resistance, pose a great threat to human health. New drugs and strategies are thus urgently needed to improve treatment efficacy and limit drug-associated side effects. Nanotechnology-based drug delivery systems are promising approaches, offering hope in the fight against drug resistant bacteria. However, how nanocarriers influence the response of innate immune cells to bacterial infection is mostly unknown. RESULTS: Here, we used Mycobacterium tuberculosis as a model of bacterial infection to examine the impact of mannose functionalization of chitosan nanocarriers (CS-NCs) on the human macrophage response. Both ungrafted and grafted CS-NCs were similarly internalized by macrophages, via an actin cytoskeleton-dependent process. Although tri-mannose ligands did not modify the capacity of CS-NCs to escape lysosomal degradation, they profoundly remodeled the response of M. tuberculosis-infected macrophages. mRNA sequencing showed nearly 900 genes to be differentially expressed due to tri-mannose grafting. Unexpectedly, the set of modulated genes was enriched for pathways involved in cell metabolism, particularly oxidative phosphorylation and sugar metabolism. CONCLUSIONS: The ability to modulate cell metabolism by grafting ligands at the surface of nanoparticles may thus be a promising strategy to reprogram immune cells and improve the efficacy of encapsulated drugs.
Asunto(s)
Infecciones Bacterianas/inmunología , Quitosano/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Manosa/química , Infecciones Bacterianas/microbiología , Células Cultivadas , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Redes y Vías Metabólicas/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Nanopartículas/química , Nanopartículas/metabolismo , Fagocitosis , Transcriptoma/efectos de los fármacosRESUMEN
DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells.
Asunto(s)
Infecciones Bacterianas/genética , Metilación de ADN , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Interacciones Huésped-Patógeno/genética , 5-Metilcitosina/análogos & derivados , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Islas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Células Dendríticas/inmunología , Epigénesis Genética , Epigenómica/métodos , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Mycobacterium tuberculosis/inmunología , Factores de Transcripción/metabolismo , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiologíaRESUMEN
Multipotent Pax3-positive (Pax3(+)) cells in the somites give rise to skeletal muscle and to cells of the vasculature. We had previously proposed that this cell-fate choice depends on the equilibrium between Pax3 and Foxc2 expression. In this study, we report that the Notch pathway promotes vascular versus skeletal muscle cell fates. Overactivating the Notch pathway specifically in Pax3(+) progenitors, via a conditional Pax3(NICD) allele, results in an increase of the number of smooth muscle and endothelial cells contributing to the aorta. At limb level, Pax3(+) cells in the somite give rise to skeletal muscles and to a subpopulation of endothelial cells in blood vessels of the limb. We now demonstrate that in addition to the inhibitory role of Notch signaling on skeletal muscle cell differentiation, the Notch pathway affects the Pax3:Foxc2 balance and promotes the endothelial versus myogenic cell fate, before migration to the limb, in multipotent Pax3(+) cells in the somite of the mouse embryo.
Asunto(s)
Células Endoteliales/citología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción Paired Box/genética , Receptores Notch/metabolismo , Somitos/embriología , Alelos , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Femenino , Factores de Transcripción Forkhead/genética , Vectores Genéticos , Masculino , Ratones , Ratones Transgénicos , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Factor de Transcripción PAX3 , Transducción de SeñalRESUMEN
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.
Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , VIH-1/metabolismo , Macrófagos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte Activo de Núcleo Celular/genética , Proteínas Portadoras/genética , Línea Celular , Núcleo Celular/genética , Núcleo Celular/virología , Proteína p24 del Núcleo del VIH/genética , Proteína p24 del Núcleo del VIH/metabolismo , VIH-1/genética , Humanos , Macrófagos/patología , Macrófagos/virología , Proteínas de Microfilamentos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologíaRESUMEN
BACKGROUND: Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. METHODS: Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. RESULTS: Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. CONCLUSIONS: Our results counteract the classical view of a homogenous regional resting state of the microglial cells within the brain. Microglial cells are distributed in different defined sub-populations that present specific behaviour after pathological challenge, allowing postulating for a cellular and functional specialization. Moreover, this new experimental approach will provide a support not only to neuropathological diagnosis but also to study microglial function in various disease models while reducing the number of animals needed to approach the international ethical statements.
Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Microglía/química , Microglía/fisiología , Fenotipo , Animales , Química Encefálica/fisiología , Cuerpo Celular/química , Cuerpo Celular/fisiología , Análisis por Conglomerados , Citoplasma/química , Citoplasma/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal/métodosRESUMEN
Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a ß-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface ß-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes.
Asunto(s)
Citoplasma/microbiología , Interacciones Huésped-Patógeno , Listeria monocytogenes/fisiología , Vacuolas/microbiología , Proteínas Bacterianas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Humanos , Listeria/enzimología , Listeria/metabolismo , Listeria monocytogenes/enzimología , Microscopía Fluorescente , beta-Lactamasas/metabolismoRESUMEN
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by CAG expansion in the huntingtin gene, which adds a homopolymeric tract of polyglutamine (polyQ) to the encoded protein leading to the formation of toxic aggregates. Despite rapidly accumulating evidences supporting a role for intercellular transmission of protein aggregates, little is known about whether and how huntingtin (Htt) misfolding progresses through the brain. It has been recently reported that synthetic polyQ peptides and recombinant fragments of mutant Htt are readily internalized in cell cultures and able to seed polymerization of a reporter wild-type Htt. However, there is no direct evidence of aggregate transfer between cells and the mechanism has not been explored. By expressing recombinant fragments of mutant Htt in neuronal cells and in primary neurons, we found that aggregated fragments formed within one cell spontaneously transfer to neighbors in cell culture. We demonstrate that the intercellular spreading of the aggregates requires cell-cell contact and does not occur upon aggregate secretion. Interestingly, we found that the expression of mutant, but not wild-type Htt fragments, increases the number of tunneling nanotubes, which in turn provide an efficient mechanism of transfer.
Asunto(s)
Nanotubos , Neuronas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Neuronas/citología , Péptidos/genética , TransfecciónRESUMEN
T-cell receptor (TCR) signalling is triggered and tuned at immunological synapses by the generation of signalling complexes that associate into dynamic microclusters. Microcluster movement is necessary to tune TCR signalling, but the molecular mechanism involved remains poorly known. We show here that the membrane-microfilament linker ezrin has an important function in microcluster dynamics and in TCR signalling through its ability to set the microtubule network organization at the immunological synapse. Importantly, ezrin and microtubules are important to down-regulate signalling events leading to Erk1/2 activation. In addition, ezrin is required for appropriate NF-AT activation through p38 MAP kinase. Our data strongly support the notion that ezrin regulates immune synapse architecture and T-cell activation through its interaction with the scaffold protein Dlg1. These results uncover a crucial function for ezrin, Dlg1 and microtubules in the organization of the immune synapse and TCR signal down-regulation. Moreover, they underscore the importance of ezrin and Dlg1 in the regulation of NF-AT activation through p38.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/inmunología , Sinapsis Inmunológicas , Activación de Linfocitos/inmunología , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Linfocitos T , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Homólogo 1 de la Proteína Discs Large , Activación Enzimática , Humanos , Sinapsis Inmunológicas/química , Sinapsis Inmunológicas/metabolismo , Sinapsis Inmunológicas/ultraestructura , Células Jurkat , Proteínas de la Membrana/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Linfocitos T/citología , Linfocitos T/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties. Following prolonged administration of fluoxetine in male mice, we showed that fluoxetine increases the number of muscle stem cells and muscle angiogenesis, associated with positive changes in skeletal muscle function. Fluoxetine also improved skeletal muscle regeneration after single and multiples injuries with an increased muscle stem cells pool and vessel density associated with reduced fibrotic lesions and inflammation. Mice devoid of peripheral serotonin treated with fluoxetine did not exhibit beneficial effects during muscle regeneration. Specifically, pharmacological, and genetic inactivation of the 5-HT1B subtype serotonin receptor also abolished the enhanced regenerative process induced by fluoxetine. We highlight here a regenerative property of serotonin on skeletal muscle.
Asunto(s)
Fluoxetina , Músculo Esquelético , Regeneración , Inhibidores Selectivos de la Recaptación de Serotonina , Serotonina , Animales , Masculino , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Regeneración/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Fluoxetina/farmacología , Ratones , Serotonina/metabolismo , Ratones Endogámicos C57BL , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Neovascularización Fisiológica/efectos de los fármacosRESUMEN
Histological analysis of skeletal muscle is of major interest for understanding its behavior in different pathophysiological conditions, such as the response to different environments or myopathies. In this context, many software programs have been developed to perform automated high-content analysis. We created MuscleJ, a macro that runs in ImageJ/Fiji on batches of images. MuscleJ is a multianalysis tool that initially allows the analysis of muscle fibers, capillaries, and satellite cells. Since its creation, it has been used in many studies, and we have further developed the software and added new features, which are presented in this article. We converted the macro into a Java-language plugin with an improved user interface. MuscleJ2 provides quantitative analysis of fibrosis, vascularization, and cell phenotype in whole muscle sections. It also performs analysis of the peri-myonuclei, the individual capillaries, and any staining in the muscle fibers, providing accurate quantification within regional sublocalizations of the fiber. A multicartography option allows users to visualize multiple results simultaneously. The plugin is freely available to the muscle science community.
Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Técnica del Anticuerpo Fluorescente , Fibras Musculares Esqueléticas , Programas InformáticosRESUMEN
A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine's addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine's rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.
Asunto(s)
Microbioma Gastrointestinal , Síndrome de Abstinencia a Sustancias , Ratones , Masculino , Animales , Nicotina/farmacología , Área Tegmental Ventral , Dopamina/metabolismo , Recompensa , Síndrome de Abstinencia a Sustancias/metabolismo , Neuroglía/metabolismoRESUMEN
Invasive infection with Entamoeba histolytica causes intestinal and hepatic amoebiasis. In liver, parasites cross the endothelial barrier before abscess formation in the parenchyma. We focussed on amoebae interactions with human hepatic endothelial cells, the latter potentially playing a dual role in the infection process: as a barrier and as modulators of host defence responses. We characterized early responses of a human liver sinusoidal endothelial cell line to virulent and virulence-attenuated E. histolytica. Within the first minutes human cells start to retract, enter into apoptosis and die. In the presence of virulent amoebae, expression of genes related to cell cycle, cell death and integrin-mediated adhesion signalling was modulated, and actin fibre, focal adhesion kinase and paxillin localizations changed. Effects of inhibitors and amoeba strains not expressing pathogenic factors amoebapore A and cysteine protease A5 indicated that cell death and cytoskeleton disorganization depend upon parasite adhesion and amoebic cysteine proteinase activities. The data establish a relation between cytotoxic effects of E. histolytica and altered human target cell adhesion and suggest that interference with adhesion signalling triggers endothelial cell retraction and death. Understanding the roles of integrin signalling in endothelial cells will provide clues to unravel host-pathogen interactions during amoebic liver infection.
Asunto(s)
Muerte Celular , Células Endoteliales/citología , Células Endoteliales/parasitología , Entamoeba histolytica/patogenicidad , Interacciones Huésped-Patógeno , Integrinas/metabolismo , Hígado/parasitología , Adhesión Celular , Línea Celular , Proteasas de Cisteína/metabolismo , Perfilación de la Expresión Génica , Humanos , Canales Iónicos/metabolismo , Análisis por Micromatrices , Microscopía , Proteínas Protozoarias/metabolismo , Factores de Virulencia/metabolismoRESUMEN
Patients with severe COVID-19 show an altered immune response that fails to control the viral spread and suffer from exacerbated inflammatory response, which eventually can lead to death. A major challenge is to develop an effective treatment for COVID-19. NF-κB is a major player in innate immunity and inflammatory process. By a high-throughput screening approach, we identified FDA-approved compounds that inhibit the NF-κB pathway and thus dampen inflammation. Among these, we show that Auranofin prevents post-translational modifications of NF-κB effectors and their recruitment into activating complexes in response to SARS-CoV-2 infection or cytokine stimulation. In addition, we demonstrate that Auranofin counteracts several steps of SARS-CoV-2 infection. First, it inhibits a raft-dependent endocytic pathway involved in SARS-CoV-2 entry into host cells; Second, Auranofin alters the ACE2 mobility at the plasma membrane. Overall, Auranofin should prevent SARS-CoV-2 infection and inflammatory damages, offering new opportunities as a repurposable drug candidate to treat COVID-19.