Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 21(5): 1871-85, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21830725

RESUMEN

Functional connectivity is a key determinant of animal distributions in heterogeneous landscapes. Patch connectivity depends on both patch preference and accessibility, but few studies have integrated habitat selection and movement analyses to gain a general understanding of functional connectivity. In this paper, we define functional connectivity by identifying which factors influence the choice of the patch that is visited next, the location from which animals leave the current patch, and the inter-patch trajectory. Our study provides tools to anticipate movement trajectories and, therefore, animal distribution in patchy landscapes. We followed 23 radio-collared bison across the meadow network of Prince Albert National Park between 2005 and 2008. Selection of the next meadow visited over available meadows was assessed by comparing their characteristics and land cover composition of the area separating them from the departure meadow. Additionally, we used 196 bison trails originating from 29 meadows to evaluate movement rules during inter-patch travels. Bison preferred to travel in deciduous rather than in conifer stands during summer and fall but displayed no preference during winter and spring. They also selected meadows offering higher plant biomass in winter than in other seasons. Throughout the year, meadow proximity was an important determinant of meadow selection. Inter-patch trajectory was influenced by directional persistence, as well as movement biases toward the next meadow and toward canopy gaps. Unlike the choices individuals made in selecting their next meadow, bison displayed no preference between forest stands during inter-meadow travel, indicating that functional connectivity involves hierarchical movement decisions. We showed that the behavioral determinants of functional connectivity varied over spatiotemporal scales. First, forest stand composition between meadows influenced the next target, but not the trajectory during inter-meadow travels. Second, meadow selection varied among seasons. Therefore, although structural connectivity may be immutable to these behaviorally induced changes in inter-patch movements, functional connectivity would adequately account for such modifications in animal spatial dynamics.


Asunto(s)
Conducta Animal/fisiología , Bison/fisiología , Ecosistema , Árboles , Animales , Movimiento , Saskatchewan , Estaciones del Año
2.
Ecology ; 90(9): 2480-90, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19769126

RESUMEN

For gregarious animals the cost-benefit trade-offs that drive habitat selection may vary dynamically with group size, which plays an important role in foraging and predator avoidance strategies. We examined how habitat selection by bison (Bison bison) varied as a function of group size and interpreted these patterns by testing whether habitat selection was more strongly driven by the competing demands of forage intake vs. predator avoidance behavior. We developed an analytical framework that integrated group size into resource selection functions (RSFs). These group-size-dependent RSFs were based on a matched case-control design and were estimated using conditional logistic regression (mixed and population-averaged models). Fitting RSF models to bison revealed that bison groups responded to multiple aspects of landscape heterogeneity and that selection varied seasonally and as a function of group size. For example, roads were selected in summer, but not in winter. Bison groups avoided areas of high snow water equivalent in winter. They selected areas composed of a large proportion of meadow area within a 700-m radius, and within those areas, bison selected meadows. Importantly, the strength of selection for meadows varied as a function of group size, with stronger selection being observed in larger groups. Hence the bison-habitat relationship depended in part on the dynamics of group formation and division. Group formation was most likely in meadows. In contrast, risk of group fission increased when bison moved into the forest and was higher during the time of day when movements are generally longer and more variable among individuals. We also found that stronger selection for meadows by large rather than small bison groups was caused by longer residence time in individual meadows by larger groups and that departure from meadows appears unlikely to result from a depression in food intake rate. These group-size-dependent patterns were consistent with the hypothesis that avoidance of predation risk is the strongest driver of habitat selection.


Asunto(s)
Bison/fisiología , Ecosistema , Conducta Predatoria/fisiología , Conducta Social , Lobos/fisiología , Animales , Modelos Biológicos , Dinámica Poblacional , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA