Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell ; 158(2): 383-396, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25018103

RESUMEN

Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Diferenciación Celular , Cuerpo Calloso/metabolismo , Células Endoteliales/citología , Técnicas In Vitro , Ratones , Neovascularización Fisiológica , Células-Madre Neurales , Oxígeno/metabolismo , Comunicación Paracrina , Proteínas Proto-Oncogénicas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas Wnt/metabolismo
2.
Nature ; 604(7907): 740-748, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444273

RESUMEN

All tissue-resident macrophages of the central nervous system (CNS)-including parenchymal microglia, as well as CNS-associated macrophages (CAMs1) such as meningeal and perivascular macrophages2-7-are part of the CNS endogenous innate immune system that acts as the first line of defence during infections or trauma2,8-10. It has been suggested that microglia and all subsets of CAMs are derived from prenatal cellular sources in the yolk sac that were defined as early erythromyeloid progenitors11-15. However, the precise ontogenetic relationships, the underlying transcriptional programs and the molecular signals that drive the development of distinct CAM subsets in situ are poorly understood. Here we show, using fate-mapping systems, single-cell profiling and cell-specific mutants, that only meningeal macrophages and microglia share a common prenatal progenitor. By contrast, perivascular macrophages originate from perinatal meningeal macrophages only after birth in an integrin-dependent manner. The establishment of perivascular macrophages critically requires the presence of arterial vascular smooth muscle cells. Together, our data reveal a precisely timed process in distinct anatomical niches for the establishment of macrophage subsets in the CNS.


Asunto(s)
Linaje de la Célula , Sistema Nervioso Central , Macrófagos , Sistema Nervioso Central/inmunología , Femenino , Humanos , Inmunidad Innata , Macrófagos/citología , Microglía , Embarazo , Saco Vitelino
3.
Nat Rev Neurosci ; 23(1): 23-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34671105

RESUMEN

Recent transcriptomic, histological and functional studies have begun to shine light on the fibroblasts present in the meninges, choroid plexus and perivascular spaces of the brain and spinal cord. Although the origins and functions of CNS fibroblasts are still being described, it is clear that they represent a distinct cell population, or populations, that have likely been confused with other cell types on the basis of the expression of overlapping cellular markers. Recent work has revealed that fibroblasts play crucial roles in fibrotic scar formation in the CNS after injury and inflammation, which have also been attributed to other perivascular cell types such as pericytes and vascular smooth muscle cells. In this Review, we describe the current knowledge of the location and identity of CNS perivascular cell types, with a particular focus on CNS fibroblasts, including their origin, subtypes, roles in health and disease, and future areas for study.


Asunto(s)
Enfermedades del Sistema Nervioso Central/fisiopatología , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/fisiología , Fibroblastos/fisiología , Animales , Sistema Nervioso Central/citología , Humanos
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660801

RESUMEN

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Quimiocina CX3CL1 , Modelos Animales de Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hipoxia/metabolismo , Hipoxia/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/genética
8.
FASEB J ; 31(8): 3689-3694, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28476896

RESUMEN

Plasma endothelial cell-derived exosomes (EDEs) and platelet-derived exosomes (PDEs) were precipitated and enriched separately by immunospecific absorption procedures for analyses of cargo proteins relevant to atherosclerosis. EDEs had usual exosome size and marker protein content, and significantly higher levels than PDEs of the endothelial proteins vascular cell adhesion molecule-1 (VCAM-1) and endothelial nitric oxide synthase, whereas PDEs had significantly higher levels of platelet glycoprotein VI. EDE levels of VCAM-1, von Willebrand factor, platelet-derived growth factor (PDGF)-BB, angiopoietin-1, and lysyl oxidase-2 and the cerebrovascular-selective proteins glucose transporter 1, permeability-glycoprotein, and large neutral amino acid transporter 1 were significantly higher for 18 patients with cerebrovascular disease (CeVD) than for 18 age- and gender-matched control subjects. PDE levels of PDGF-AA, platelet glycoprotein VI, integrin-linked kinase-1, high mobility group box-1 protein, chemokine CXCL4, and thrombospondin-1 were significantly higher in patients with CeVD than in control subjects, but differences were less with greater overlaps than for EDE proteins. EDE levels of Yes-associated protein (YAP) were higher and of P(S127)-YAP lower in patients with CeVD than in control subjects, consistent with heightened activity of this mechanical force-sensitive system in atherosclerosis. Elevated EDE and PDE levels of atherosclerosis-promoting proteins in CeVD justify clinical studies of their potential value as biomarkers.-Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., Jicha, G. A. Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Plaquetas/fisiología , Proteínas Portadoras/metabolismo , Trastornos Cerebrovasculares/metabolismo , Células Endoteliales/fisiología , Exosomas/fisiología , Anciano , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Perilipinas/metabolismo
9.
Immunity ; 31(5): 722-35, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19836264

RESUMEN

In order to protect itself from a diverse set of environmental pathogens and toxins, the body has developed a number of barrier mechanisms to limit the entry of potential hazards. Here, we compare two such barriers: the gut immune barrier, which is the primary barrier against pathogens and toxins ingested in food, and the blood-brain barrier, which protects the central nervous system from pathogens and toxins in the blood. Although each barrier provides defense in very different environments, there are many similarities in their mechanisms of action. In both cases, there is a physical barrier formed by a cellular layer that tightly regulates the movement of ions, molecules, and cells between two tissue spaces. These barrier cells interact with different cell types, which dynamically regulate their function, and with a different array of immune cells that survey the physical barrier and provide innate and adaptive immunity.


Asunto(s)
Barrera Hematoencefálica/inmunología , Tracto Gastrointestinal/inmunología , Humanos , Inmunidad , Membrana Mucosa/inmunología
10.
Mol Ther ; 25(7): 1531-1543, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28456380

RESUMEN

We have investigated delivery of protein therapeutics from the bloodstream into the brain using a mouse model of late-infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal disease due to deficiencies in tripeptidyl peptidase 1 (TPP1). Supraphysiological levels of TPP1 are delivered to the mouse brain by acute intravenous injection when co-administered with K16ApoE, a peptide that in trans mediates passage across the blood-brain barrier (BBB). Chronic treatment of LINCL mice with TPP1 and K16ApoE extended the lifespan from 126 to >294 days, diminished pathology, and slowed locomotor dysfunction. K16ApoE enhanced uptake of a fixable biotin tracer by brain endothelial cells in a dose-dependent manner, suggesting that its mechanism involves stimulation of endocytosis. Pharmacokinetic experiments indicated that K16ApoE functions without disrupting the BBB, with minimal effects on overall clearance or uptake by the liver and kidney. K16ApoE has a narrow therapeutic index, with toxicity manifested as lethargy and/or death in mice. To address this, we evaluated variant peptides but found that efficacy and toxicity are associated, suggesting that desired and adverse effects are mechanistically related. Toxicity currently precludes direct clinical application of peptide-mediated delivery in its present form but it remains a useful approach to proof-of-principle studies for biologic therapies to the brain in animal models.


Asunto(s)
Aminopeptidasas/genética , Apolipoproteínas E/farmacocinética , Barrera Hematoencefálica/efectos de los fármacos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Portadores de Fármacos , Lipofuscinosis Ceroideas Neuronales/terapia , Péptidos/farmacocinética , Serina Proteasas/genética , Secuencia de Aminoácidos , Aminopeptidasas/deficiencia , Animales , Apolipoproteínas E/química , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/deficiencia , Modelos Animales de Enfermedad , Endocitosis , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Terapia de Reemplazo Enzimático/métodos , Regulación de la Expresión Génica , Humanos , Lactante , Inyecciones Intravenosas , Ratones , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Péptidos/química , Serina Proteasas/deficiencia , Análisis de Supervivencia , Resultado del Tratamiento , Tripeptidil Peptidasa 1
11.
PLoS Pathog ; 10(12): e1004528, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474413

RESUMEN

Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8(+) T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45(hi) CD8(+) T cells, ICAM-1(+) macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8(+) T cells and ICAM(+) macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.


Asunto(s)
Barrera Hematoencefálica/inmunología , Corteza Cerebral/inmunología , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Plasmodium yoelii/inmunología , Animales , Barrera Hematoencefálica/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Corteza Cerebral/parasitología , Corteza Cerebral/patología , Claudina-5/inmunología , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod , Humanos , Inmunosupresores/farmacología , Molécula 1 de Adhesión Intercelular/inmunología , Macrófagos/inmunología , Macrófagos/patología , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/patología , Ratones , Neutrófilos/inmunología , Neutrófilos/patología , Ocludina/inmunología , Glicoles de Propileno/farmacología , Esfingosina/análogos & derivados , Esfingosina/farmacología , Proteína de la Zonula Occludens-1/inmunología
12.
Nature ; 468(7323): 562-6, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20944625

RESUMEN

Vascular endothelial cells in the central nervous system (CNS) form a barrier that restricts the movement of molecules and ions between the blood and the brain. This blood-brain barrier (BBB) is crucial to ensure proper neuronal function and protect the CNS from injury and disease. Transplantation studies have demonstrated that the BBB is not intrinsic to the endothelial cells, but is induced by interactions with the neural cells. Owing to the close spatial relationship between astrocytes and endothelial cells, it has been hypothesized that astrocytes induce this critical barrier postnatally, but the timing of BBB formation has been controversial. Here we demonstrate that the barrier is formed during embryogenesis as endothelial cells invade the CNS and pericytes are recruited to the nascent vessels, over a week before astrocyte generation. Analysing mice with null and hypomorphic alleles of Pdgfrb, which have defects in pericyte generation, we demonstrate that pericytes are necessary for the formation of the BBB, and that absolute pericyte coverage determines relative vascular permeability. We demonstrate that pericytes regulate functional aspects of the BBB, including the formation of tight junctions and vesicle trafficking in CNS endothelial cells. Pericytes do not induce BBB-specific gene expression in CNS endothelial cells, but inhibit the expression of molecules that increase vascular permeability and CNS immune cell infiltration. These data indicate that pericyte-endothelial cell interactions are critical to regulate the BBB during development, and disruption of these interactions may lead to BBB dysfunction and neuroinflammation during CNS injury and disease.


Asunto(s)
Barrera Hematoencefálica/citología , Barrera Hematoencefálica/embriología , Sistema Nervioso Central/embriología , Pericitos/metabolismo , Animales , Barrera Hematoencefálica/ultraestructura , Células Cultivadas , Sistema Nervioso Central/irrigación sanguínea , Sistema Nervioso Central/citología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley
13.
J Neurosci ; 34(36): 11929-47, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186741

RESUMEN

The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain.


Asunto(s)
Empalme Alternativo , Corteza Cerebral/metabolismo , Bases de Datos de Ácidos Nucleicos , Endotelio Vascular/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Transcriptoma , Animales , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Ratones , Análisis de Secuencia de ARN
14.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38270593

RESUMEN

Mural cells directly contact macrophages in the dural layer of the meninges to suppress pro-inflammatory phenotypes, including antigen presentation and lymphocyte differentiation. These mechanisms represent new targets for modulating CNS immune surveillance and pathological inflammation (Min et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20230326).


Asunto(s)
Antiinflamatorios , Pintura , Humanos , Inflamación , Presentación de Antígeno , Vigilancia Inmunológica
15.
Sci Adv ; 10(5): eadi1737, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306433

RESUMEN

Brain mural cells regulate development and function of the blood-brain barrier and control blood flow. Existing in vitro models of human brain mural cells have low expression of key mural cell genes, including NOTCH3. Thus, we asked whether activation of Notch3 signaling in hPSC-derived neural crest could direct the differentiation of brain mural cells with an improved transcriptional profile. Overexpression of the Notch3 intracellular domain (N3ICD) induced expression of mural cell markers PDGFRß, TBX2, FOXS1, KCNJ8, SLC6A12, and endogenous Notch3. The resulting N3ICD-derived brain mural cells produced extracellular matrix, self-assembled with endothelial cells, and had functional KATP channels. ChIP-seq revealed that Notch3 serves as a direct input to relatively few genes in the context of this differentiation process. Our work demonstrates that activation of Notch3 signaling is sufficient to direct the differentiation of neural crest to mural cells and establishes a developmentally relevant differentiation protocol.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes , Humanos , Células Endoteliales/metabolismo , Cresta Neural/metabolismo , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Encéfalo/metabolismo , Factores de Transcripción Forkhead/metabolismo
16.
bioRxiv ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38645230

RESUMEN

The blood-brain barrier (BBB) is critical for maintaining brain homeostasis but is susceptible to inflammatory dysfunction. Permeability of the BBB to lipophilic molecules shows circadian variation due to rhythmic transporter expression, while basal permeability to polar molecules is non-rhythmic. Whether daily timing influences BBB permeability in response to inflammation is unknown. Here, we induced systemic inflammation through repeated lipopolysaccharide (LPS) injections either in the morning (ZT1) or evening (ZT13) under standard lighting conditions, then examined BBB permeability to a polar molecule, sodium fluorescein. We observed clear diurnal variation in inflammatory BBB permeability, with a striking increase in paracellular leak across the BBB specifically following evening LPS injection. Evening LPS led to persisting glia activation and inflammation in the brain that was not observed in the periphery. The exaggerated evening neuroinflammation and BBB disruption were suppressed by microglial depletion or through keeping mice in constant darkness. Our data show that diurnal rhythms in microglial inflammatory responses to LPS drive daily variability in BBB breakdown and reveals time-of-day as a key regulator of inflammatory BBB disruption.

17.
J Neurosci ; 32(28): 9588-600, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22787045

RESUMEN

The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked whether the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2-24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70 kDa dextran) and small (3 kDa dextran), gadolinium (III)-diethyltriaminepentaacetic acid tracers remained largely undisturbed 24 h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24 h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and matrix metalloproteinase-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin, and zonula occludens protein 1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of cytokine-induced neutrophil chemoattractant-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability, and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Permeabilidad Capilar/fisiología , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Factores de Edad , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Colágeno/metabolismo , Dextranos/farmacocinética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Azul de Evans , Femenino , Colorantes Fluorescentes , Lateralidad Funcional , Gadolinio DTPA , Regulación de la Expresión Génica/fisiología , Procesamiento de Imagen Asistido por Computador , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Lectinas/metabolismo , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/metabolismo , Radiografía , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Reperfusión , Albúmina Sérica Bovina , Estadísticas no Paramétricas , Factores de Tiempo
18.
Ann Neurol ; 72(5): 648-72, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23280789

RESUMEN

The blood-brain barrier (BBB) is a term used to describe a series of properties possessed by the vasculature of the central nervous system (CNS) that tightly regulate the movement of ions, molecules, and cells between the blood and the CNS. This barrier is crucial to provide the appropriate environment to allow for proper neural function, as well as protect the CNS from injury and disease. In this review, I discuss the cellular and molecular composition of the BBB and how the development and function of the BBB is regulated by interactions with the CNS microenvironment. I further discuss what is known about BBB dysfunction during CNS injury and disease, as well as methodology used to deliver drugs across the BBB to the CNS.


Asunto(s)
Barrera Hematoencefálica , Enfermedades del Sistema Nervioso/patología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Regulación de la Expresión Génica/fisiología , Humanos
19.
J Clin Invest ; 133(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36853799

RESUMEN

Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Esclerosis Múltiple , Animales , Humanos , Clostridium perfringens/genética , Esclerosis Múltiple/genética , Privilegio Inmunológico , Linfocitos
20.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598178

RESUMEN

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Ratones , Distribución Tisular , Anticuerpos , Ingeniería , Macaca fascicularis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA