Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002724, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39052688

RESUMEN

Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Factores de Transcripción , Sitio de Iniciación de la Transcripción , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cryptococcus/genética , Cryptococcus/patogenicidad , Cryptococcus/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Animales , Ratones , Virulencia/genética , Fagocitosis/genética
2.
Plant J ; 115(5): 1193-1213, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37219821

RESUMEN

Plants have evolved an extensive specialized secondary metabolism. The colorful flavonoid anthocyanins, for example, not only stimulate flower pollination and seed dispersal, but also protect different tissues against high light, UV and oxidative stress. Their biosynthesis is highly regulated by environmental and developmental cues and induced by high sucrose levels. Expression of the biosynthetic enzymes involved is controlled by a transcriptional MBW complex, comprising (R2R3) MYB- and bHLH-type transcription factors and the WD40 repeat protein TTG1. Anthocyanin biosynthesis is not only useful, but also carbon- and energy-intensive and non-vital. Consistently, the SnRK1 protein kinase, a metabolic sensor activated in carbon- and energy-depleting stress conditions, represses anthocyanin biosynthesis. Here we show that Arabidopsis SnRK1 represses MBW complex activity both at the transcriptional and post-translational level. In addition to repressing expression of the key transcription factor MYB75/PAP1, SnRK1 activity triggers MBW complex dissociation, associated with loss of target promoter binding, MYB75 protein degradation and nuclear export of TTG1. We also provide evidence for direct interaction with and phosphorylation of multiple MBW complex proteins. These results indicate that repression of expensive anthocyanin biosynthesis is an important strategy to save energy and redirect carbon flow to more essential processes for survival in metabolic stress conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilación , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
mBio ; 14(4): e0087023, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37310732

RESUMEN

Resistance to fluconazole (FLC), the most widely used antifungal drug, is typically achieved by altering the azole drug target and/or drug efflux pumps. Recent reports have suggested a link between vesicular trafficking and antifungal resistance. Here, we identified novel Cryptococcus neoformans regulators of extracellular vesicle (EV) biogenesis that impact FLC resistance. In particular, the transcription factor Hap2 does not affect the expression of the drug target or efflux pumps, yet it impacts the cellular sterol profile. Subinhibitory FLC concentrations also downregulate EV production. Moreover, in vitro spontaneous FLC-resistant colonies showed altered EV production, and the acquisition of FLC resistance was associated with decreased EV production in clinical isolates. Finally, the reversion of FLC resistance was associated with increased EV production. These data suggest a model in which fungal cells can regulate EV production in place of regulating the drug target gene expression as a first line of defense against antifungal assault in this fungal pathogen. IMPORTANCE Extracellular vesicles (EVs) are membrane-enveloped particles that are released by cells into the extracellular space. Fungal EVs can mediate community interactions and biofilm formation, but their functions remain poorly understood. Here, we report the identification of the first regulators of EV production in the major fungal pathogen Cryptococcus neoformans. Surprisingly, we uncover a novel role of EVs in modulating antifungal drug resistance. Disruption of EV production was associated with altered lipid composition and changes in fluconazole susceptibility. Spontaneous azole-resistant mutants were deficient in EV production, while loss of resistance restored initial EV production levels. These findings were recapitulated in C. neoformans clinical isolates, indicating that azole resistance and EV production are coregulated in diverse strains. Our study reveals a new mechanism of drug resistance in which cells adapt to azole stress by modulating EV production.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Vesículas Extracelulares , Fluconazol/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Criptococosis/microbiología , Azoles , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
4.
J Fungi (Basel) ; 8(10)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36294609

RESUMEN

Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA