Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Nature ; 575(7781): 203-209, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666698

RESUMEN

Accumulation of mutant proteins is a major cause of many diseases (collectively called proteopathies), and lowering the level of these proteins can be useful for treatment of these diseases. We hypothesized that compounds that interact with both the autophagosome protein microtubule-associated protein 1A/1B light chain 3 (LC3)1 and the disease-causing protein may target the latter for autophagic clearance. Mutant huntingtin protein (mHTT) contains an expanded polyglutamine (polyQ) tract and causes Huntington's disease, an incurable neurodegenerative disorder2. Here, using small-molecule-microarray-based screening, we identified four compounds that interact with both LC3 and mHTT, but not with the wild-type HTT protein. Some of these compounds targeted mHTT to autophagosomes, reduced mHTT levels in an allele-selective manner, and rescued disease-relevant phenotypes in cells and in vivo in fly and mouse models of Huntington's disease. We further show that these compounds interact with the expanded polyQ stretch and could lower the level of mutant ataxin-3 (ATXN3), another disease-causing protein with an expanded polyQ tract3. This study presents candidate compounds for lowering mHTT and potentially other disease-causing proteins with polyQ expansions, demonstrating the concept of lowering levels of disease-causing proteins using autophagosome-tethering compounds.


Asunto(s)
Alelos , Evaluación Preclínica de Medicamentos/métodos , Proteína Huntingtina/antagonistas & inhibidores , Proteína Huntingtina/genética , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/genética , Mutación/genética , Animales , Ataxina-3/genética , Autofagosomas/metabolismo , Autofagia , Modelos Animales de Enfermedad , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/efectos de los fármacos , Neuronas/citología , Péptidos/genética , Fenotipo , Reproducibilidad de los Resultados
2.
Proc Natl Acad Sci U S A ; 119(10): e2114303119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238684

RESUMEN

Identifying inhibitors of pathogenic proteins is the major strategy of targeted drug discoveries. This strategy meets challenges in targeting neurodegenerative disorders such as Huntington's disease (HD), which is mainly caused by the mutant huntingtin protein (mHTT), an "undruggable" pathogenic protein with unknown functions. We hypothesized that some of the chemical binders of mHTT may change its conformation and/or stability to suppress its downstream toxicity, functioning similarly to an "inhibitor" under a broader definition. We identified 21 potential mHTT selective binders through a small-molecule microarray­based screening. We further tested these compounds using secondary phenotypic screens for their effects on mHTT-induced toxicity and revealed four potential mHTT-binding compounds that may rescue HD-relevant phenotypes. Among them, a Food and Drug Administration­approved drug, desonide, was capable of suppressing mHTT toxicity in HD cellular and animal models by destabilizing mHTT through enhancing its polyubiquitination at the K6 site. Our study reveals the therapeutic potential of desonide for HD treatment and provides the proof of principle for a drug discovery pipeline: target-binder screens followed by phenotypic validation and mechanistic studies.


Asunto(s)
Desonida , Proteína Huntingtina , Enfermedad de Huntington , Mutación , Animales , Desonida/química , Desonida/farmacología , Modelos Animales de Enfermedad , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Estabilidad Proteica/efectos de los fármacos
3.
J Hepatol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960374

RESUMEN

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

4.
J Nat Prod ; 87(4): 713-721, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38417168

RESUMEN

PD-1/PD-L1 monoclonal antibodies exhibit promising therapeutic effectiveness in multiple cancers. However, developing a simple and efficient non-antibody treatment strategy using the PD-1/PD-L1 signaling pathway still remains challenging. In this study, we developed a flow cytometry assay to screen bioactive compounds with PD-L1 inhibitory activity. A total of 409 marine natural products were screened, and sokotrasterol sulfate (SKS) was found to efficiently suppress the IFN-γ-induced PD-L1 expression. SKS sensitizes the tumor cells to antigen-specific T-cell killing in the T cell-tumor cell coculture system. Mechanistically, SKS directly targeted Janus kinase (JAK) to inhibit the downstream activation of signal transducer and activator of transcription (STAT) and the subsequent transcription of PDL1. Our findings highlight the immunological role of SKS that may act as a basis for a potential immunotherapeutic agent.


Asunto(s)
Antígeno B7-H1 , Interferón gamma , Quinasas Janus , Interferón gamma/farmacología , Humanos , Quinasas Janus/metabolismo , Esteroles/farmacología , Transducción de Señal/efectos de los fármacos , Estructura Molecular , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Línea Celular Tumoral
5.
Bioorg Chem ; 143: 107057, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150934

RESUMEN

Pyridoxal kinase (PDXK) is an essential enzyme in the synthesis of pyridoxal 5-phosphate (PLP), the active form of vitamin B6, which plays a pivotal role in maintaining the enzyme activity necessary for cell metabolism. Thus, PDXK has garnered attention as a potential target for metabolism regulation and tumor therapy. Despite this interest, existing PDXK inhibitors have faced limitations, including weak suppressive activity, unclear mechanisms of action, and associated toxic side effects. In this study, we present the discovery of a novel PDXK inhibitor, luteolin, through a high-throughput screening approach based on enzyme activity. Luteolin, a natural product, exhibits micromolar-level affinity for PDXK and effectively inhibits the enzyme's activity in vitro. Our crystal structures reveal that luteolin occupies the ATP binding pocket through hydrophobic interactions and a weak hydrogen bonding pattern, displaying reversible characteristics as confirmed by biochemical assays. Moreover, luteolin disrupts vitamin B6 metabolism by targeting PDXK, thereby inhibiting the proliferation of leukemia cells. This research introduces a novel screening method for identifying high-affinity and potent PDXK inhibitors and sheds light on clarification of the structural mechanism of PDXK-luteolin for subsequent structure optimization of inhibitors.


Asunto(s)
Luteolina , Piridoxal Quinasa , Humanos , Piridoxal Quinasa/química , Piridoxal Quinasa/metabolismo , Luteolina/farmacología , Fosfato de Piridoxal/metabolismo , Vitamina B 6/farmacología , Vitamina B 6/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
6.
J Med Virol ; 95(3): e28578, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36846971

RESUMEN

Hepatitis B surface antigen (HBsAg) loss and seroconversion, which is considered as functional cure of chronic Hepatitis B virus (HBV) infection, is rarely achieved even after long-term antiviral treatments. Therefore, new antiviral strategies interfering with other HBV replication steps are required, especially those that could efficiently inhibit HBsAg production. Here, we identified novel anti-HBV compounds that could potently block HBsAg expression from cccDNA by screening a natural compound library derived from Chinese traditional medical plants by a novel screening strategy. The combination of ELISA assay detecting the HBsAg and real-time PCR detecting HBV RNAs as indicator for cccDNA transcriptional activity were used. The antiviral activity of a candidate compound and underlying mechanism were evaluated in HBV-infected cells and a humanized liver mouse model. Herein, we selected a highly effective low-cytotoxic compound sphondin, which could effectively inhibit both intracellular HBsAg production and HBV RNAs levels. Moreover, we found that sphondin markedly inhibited cccDNA transcriptional activity without affecting cccDNA level. Mechanistic study found sphondin preferentially bound to HBx protein by residue Arg72, which led to increased 26S proteasome-mediated degradation of HBx. Sphondin treatment significantly reduced the recruitment of HBx to cccDNA, which subsequently led to inhibition of cccDNA transcription and HBsAg expression. The absence of HBx or R72A mutation potently abrogated the antiviral effect induced by sphondin in HBV-infected cells. Collectively, sphondin may be considered as a novel and natural antiviral agent directly targeting HBx protein, which effectively inhibited cccDNA transcription and HBsAg expression.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Animales , Ratones , Antígenos de Superficie de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Virus de la Hepatitis B/fisiología , Antivirales/uso terapéutico , ADN Viral/genética , ADN Circular , Replicación Viral
7.
Acta Pharmacol Sin ; 44(10): 2103-2112, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37193754

RESUMEN

Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 µM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 µM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 µM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.


Asunto(s)
Cisplatino , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Animales , Humanos , Ratones , Anticuerpos , Antígeno B7-H1/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1 , Inhibidores de Puntos de Control Inmunológico/farmacología
8.
Mar Drugs ; 21(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36827109

RESUMEN

Autophagy is widely implicated in pathophysiological processes such as tumors and metabolic and neurodegenerative disorders, making it an attractive target for drug discovery. Several chemical screening approaches have been developed to uncover autophagy-modulating compounds. However, the modulation capacity of marine compounds with significant pharmacological activities is largely unknown. We constructed an EGFPKI-LC3B cell line using the CRISPR/Cas9 knock-in strategy in which green fluorescence indicated endogenous autophagy regulation. Using this cell line, we screened a compound library of approximately 500 marine natural products and analogues to investigate molecules that altered the EGFP fluorescence. We identified eight potential candidates that enhanced EGFP fluorescence, and HDYL-GQQ-495 was the leading one. Further validation with immunoblotting demonstrated that cleaved LC3 was increased in dose- and time-dependent manners, and the autophagy adaptor P62 showed oligomerization after HDYL-GQQ-495 treatment. We also demonstrated that HDYL-GQQ-495 treatment caused autophagy substrate aggregation, which indicated that HDYL-GQQ-495 serves as an autophagy inhibitor. Furthermore, HDYL-GQQ-495 induced Gasdermin E (GSDME) cleavage and promoted pyroptosis. Moreover, HDYL-GQQ-495 directly combined with P62 to induce P62 polymerization. In P62 knockout cells, the cleavage of LC3 or GSDME was blocked after HDYL-GQQ-495 treatment. The EGFPKI-LC3B cell line was an effective tool for autophagy modulator screening. Using this tool, we found a novel marine-derived compound, HDYL-GQQ-495, targeting P62 to inhibit autophagy and promote pyroptosis.


Asunto(s)
Neoplasias , Humanos , Proteína Sequestosoma-1/metabolismo , Línea Celular , Piroptosis , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo
9.
Biochem Biophys Res Commun ; 622: 184-191, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-35932530

RESUMEN

Hepatic steatosis is one of the most important causes of liver disease worldwide. Heat shock protein 90 (HSP90) is essential for numerous client proteins. Recently, more attention was focused on increased HSP90 levels in hepatic steatosis, especially HSP90ß. Thus, great efforts have been made to develop HSP90ß inhibitors, and most natural inhibitors are derived from microorganisms. In this study, using microarray chips and surface pasmon resonance (SPR) technology, we screened 189 antibiotics in order to obtain an inhibitor directly binding to the non-N-terminal domain of HSP90ß. Finally, we discovered an antibiotic, 7-aminocephalosporanic acid (7ACA), with a KD value of 6.201 µM between 7ACA and non-N-terminal domain of HSP90ß. Besides, 7ACA was predicted to interact with the middle domain (MD) of HSP90ß. In HepG2 cells, we found that 7ACA reduced cellular total cholesterol (TC) and triglyceride (TG) by decreasing sterol regulatory element-binding proteins (SREBPs). In HFD fed mice, administration of 7ACA (5, 10, and 25 mg kg-1 d-1, ig, for 12 weeks) dose-dependently decreased serum TC and TG and played an important role in protecting liver and adipose tissue from lipid accumulation. In conclusion, our study demonstrated that antibiotic 7ACA, as an HSP90ß middle domain inhibitor, was promising for the development of lipid-lowering drugs.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefalosporinas , Dieta Alta en Grasa , Lipogénesis , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
10.
Mol Psychiatry ; 26(8): 4367-4382, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31745236

RESUMEN

Alcohol misuse is a major public health problem originating from genetic and environmental risk factors. Alterations in the brain epigenome may orchestrate changes in gene expression that lead to alcohol misuse and dependence. Through epigenome-wide association analysis of DNA methylation from human brain tissues, we identified a differentially methylated region, DMR-DLGAP2, associated with alcohol dependence. Methylation within DMR-DLGAP2 was found to be genotype-dependent, allele-specific and associated with reward processing in brain. Methylation at the DMR-DLGAP2 regulated expression of DLGAP2 in vitro, and Dlgap2-deficient mice showed reduced alcohol consumption compared with wild-type controls. These results suggest that DLGAP2 may be an interface for genetic and epigenetic factors controlling alcohol use and dependence.


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo/genética , Metilación de ADN , Epigénesis Genética , Proteínas del Tejido Nervioso/genética , Consumo de Bebidas Alcohólicas/genética , Animales , Epigenoma , Genotipo , Ratones
11.
J Am Chem Soc ; 143(40): 16377-16382, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34596400

RESUMEN

The targeted degradation of membrane proteins would afford an attractive and general strategy for treating various diseases that remain difficult with the current proteolysis-targeting chimera (PROTAC) methodology. We herein report a covalent nanobody-based PROTAC strategy, termed GlueTAC, for targeted membrane protein degradation with high specificity and efficiency. We first established a mass-spectrometry-based screening platform for the rapid development of a covalent nanobody (GlueBody) that allowed proximity-enabled cross-linking with surface antigens on cancer cells. By conjugation with a cell-penetrating peptide and a lysosomal-sorting sequence, the resulting GlueTAC chimera triggered the internalization and degradation of programmed death-ligand 1 (PD-L1), which provides a new avenue to target and degrade cell-surface proteins.


Asunto(s)
Proteolisis
12.
Acta Pharmacol Sin ; 42(10): 1556-1566, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33495516

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by toxic aggregates of mutant huntingtin protein (mHTT) in the brain. Decreasing mHTT is a potential strategy for therapeutic purpose of HD. Valosin-containing protein (VCP/p97) is a crucial regulator of proteostasis, which regulates the degradation of damaged protein through proteasome and autophagy pathway. Since VCP has been implicated in pathogenesis of HD as well as other neurodegenerative diseases, small molecules that specifically regulate the activity of VCP may be of therapeutic benefits for HD patients. In this study we established a high-throughput screening biochemical assay for VCP ATPase activity measurement and identified gossypol, a clinical approved drug in China, as a novel modulator of VCP. Gossypol acetate dose-dependently inhibited the enzymatic activity of VCP in vitro with IC50 of 6.53±0.6 µM. We further demonstrated that gossypol directly bound to the interface between the N and D1 domains of VCP. Gossypol acetate treatment not only lowered mHTT levels and rescued HD-relevant phenotypes in HD patient iPS-derived Q47 striatal neurons and HD knock-in mouse striatal cells, but also improved motor function deficits in both Drosophila and mouse HD models. Taken together, gossypol acetate acted through a gain-of-function way to induce the formation of VCP-LC3-mHTT ternary complex, triggering autophagic degradation of mHTT. This study reveals a new strategy for treatment of HD and raises the possibility that an existing drug can be repurposed as a new treatment of neurodegenerative diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Gosipol/uso terapéutico , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Drosophila , Inhibidores Enzimáticos/uso terapéutico , Femenino , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Multimerización de Proteína/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteína que Contiene Valosina/antagonistas & inhibidores , Proteína que Contiene Valosina/metabolismo
13.
Acta Pharmacol Sin ; 42(5): 801-813, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32796956

RESUMEN

Grincamycins (GCNs) are a class of angucycline glycosides isolated from actinomycete Streptomyces strains that have potent antitumor activities, but their antitumor mechanisms remain unknown. In this study, we tried to identify the cellular target of grincamycin B (GCN B), one of most dominant and active secondary metabolites, using a combined strategy. We showed that GCN B-selective-induced apoptosis of human acute promyelocytic leukemia (APL) cell line NB4 through increase of ER stress and intracellular reactive oxygen species (ROS) accumulation. Using a strategy of combining phenotype, transcriptomics and protein microarray approaches, we identified that isocitrate dehydrogenase 1(IDH1) was the putative target of GCN B, and confirmed that GCNs were a subset of selective inhibitors targeting both wild-type and mutant IDH1 in vitro. It is well-known that IDH1 converts isocitrate to 2-oxoglutarate (2-OG), maintaining intracellular 2-OG homeostasis. IDH1 and its mutant as the target of GCN B were validated in NB4 cells and zebrafish model. Knockdown of IDH1 in NB4 cells caused the similar phenotype as GCN B treatment, and supplementation of N-acetylcysteine partially rescued the apoptosis caused by IDH1 interference in NB4 cells. In zebrafish model, GCN B effectively restored myeloid abnormality caused by overexpression of mutant IDH1(R132C). Taken together, we demonstrate that IDH1 is one of the antitumor targets of GCNs, suggesting wild-type IDH1 may be a potential target for hematological malignancies intervention in the future.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Glicósidos/farmacología , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Animales , Antraquinonas/metabolismo , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Glicósidos/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
14.
Angew Chem Int Ed Engl ; 60(50): 26105-26114, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34590387

RESUMEN

The autophagic ubiquitin-like protein LC3 functions through interactions with LC3-interaction regions (LIRs) of other autophagy proteins, including autophagy receptors, which stands out as a promising protein-protein interaction (PPI) target for the intervention of autophagy. Post-translational modifications like acetylation of Lys49 on the LIR-interacting surface could disrupt the interaction, offering an opportunity to design covalent small molecules interfering with the interface. Through screening covalent compounds, we discovered a small molecule modulator of LC3A/B that covalently modifies LC3A/B protein at Lys49. Activity-based protein profiling (ABPP) based evaluations reveal that a derivative molecule DC-LC3in-D5 exhibits a potent covalent reactivity and selectivity to LC3A/B in HeLa cells. DC-LC3in-D5 compromises LC3B lipidation in vitro and in HeLa cells, leading to deficiency in the formation of autophagic structures and autophagic substrate degradation. DC-LC3in-D5 could serve as a powerful tool for autophagy research as well as for therapeutic interventions.


Asunto(s)
Autofagia/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
15.
Blood ; 131(12): 1325-1336, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29437589

RESUMEN

B-cell lymphomas are heterogeneous blood disorders with limited therapeutic options, largely because of their propensity to relapse and become refractory to treatments. Carabin, a key suppressor of B-cell receptor signaling and proliferation, is inactivated in B-cell lymphoma by unknown mechanisms. Here, we identify prolyl 4-hydroxylase 2 (P4HA2) as a specific proline hydroxylase of Carabin. Carabin hydroxylation leads to its proteasomal degradation, thereby activating the Ras/extracellular signal-regulated kinase pathway and increasing B-cell lymphoma proliferation. P4HA2 is undetectable in normal B cells but upregulated in the diffuse large B-cell lymphoma (DLBCL), driving Carabin inactivation and lymphoma proliferation. Our results indicate that P4HA2 is a potential prognosis marker for DLBCL and a promising pharmacological target for developing treatment of molecularly stratified B-cell lymphomas.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Linfoma de Células B Grandes Difuso/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Prolil Hidroxilasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proteínas Activadoras de GTPasa , Humanos , Hidroxilación , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Proteínas de Neoplasias/genética , Prolil Hidroxilasas/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
16.
J Org Chem ; 85(19): 12080-12096, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32924489

RESUMEN

Holostane glycosides are characteristic metabolites of sea cucumbers, which possess various biological activities. Here, we report the synthesis of two representative congeners, namely, pervicoside B and C, starting from lanosterol with the longest linear sequence of both 34 steps and in 0.3% overall yields. The flexible synthetic approach has enabled us to expeditiously prepare 16 analogues for preliminary studies on the key structural features influencing their antiproliferative activities against tumor cells. A simplified disaccharide is found to be as potent as natural tetrasaccharides, which can be used as a lead for future studies.


Asunto(s)
Saponinas , Pepinos de Mar , Triterpenos , Animales , Glicósidos , Saponinas/farmacología
17.
Bioorg Med Chem Lett ; 30(2): 126825, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31836442

RESUMEN

IDH1 mutations are closely related to the development and progression of various human cancers, such as glioblastoma, sarcoma, and acute myeloid leukemia. By screening dozens of reported natural compounds using both wild-type and mutant IDH1 enzymatic assays, we discovered Licochalcone A is a selective inhibitor to the R132C-mutant IDH1 with an IC50 value of 5.176 µM, and inhibits the proliferation of sarcoma HT-1080 cells with an IC50 value of 10.75 µM. Suggested by the molecular docking results, Licochalcone A might occupy the allosteric pocket between the two monomers of IDH1 homodimer, and the R132H mutation was unfavorable for the binding of Licochalcone A with the IDH1 protein, as compared to the R132C mutation. Revealed by the RNA-Seq data analysis, the Cell Cycle pathway was the most over-represented pathway for HT-1080 cells treated with Licochalcone A. Consistent with these results, Licochalcone A induced apoptosis and cell cycle arrest of HT-1080 cells, while it showed minimal effect against the proliferation of normal RCTEC cells. The discovery of Licochalcone A as a mutation-selective IDH1 inhibitor can serve as a promising starting point for the development of mutation-selective anti-tumor lead compounds targeting IDH1.


Asunto(s)
Chalconas/uso terapéutico , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Sarcoma/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Chalconas/farmacología , Humanos
18.
Acta Pharmacol Sin ; 41(9): 1246-1254, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32210356

RESUMEN

Mitophagy is a degradative pathway that mediates the degradation of the entire mitochondria, and defects in this process are implicated in many diseases including cancer. In mammals, mitophagy is mediated by BNIP3L (also known as NIX) that is a dual regulator of mitochondrial turnover and programmed cell death pathways. Acute myeloid leukemia (AML) cells with deficiency of BNIP3L are more sensitive to mitochondria-targeting drugs. But small molecular inhibitors for BNIP3L are currently not available. Some immunomodulatory drugs (IMiDs) have been proved by FDA for hematologic malignancies, however, the underlining molecular mechanisms are still elusive, which hindered the applications of BNIP3L inhibition for AML treatment. In this study we carried out MS-based quantitative proteomics analysis to identify the potential neosubstrates of a novel thalidomide derivative CC-885 in A549 cells. In total, we quantified 5029 proteins with 36 downregulated in CRBN+/+ cell after CC-885 administration. Bioinformatic analysis showed that macromitophagy pathway was enriched in the negative pathway after CC-885 treatment. We further found that CC-885 caused both dose- and time-dependent degradation of BNIP3L in CRBN+/+, but not CRBN-/- cell. Thus, our data uncover a novel role of CC-885 in the regulation of mitophagy by targeting BNIP3L for CRL4CRBN E3 ligase-dependent ubiquitination and degradation, suggesting that CC-885 could be used as a selective BNIP3L degradator for the further investigation. Furthermore, we demonstrated that CC-885 could enhance AML cell sensitivity to the mitochondria-targeting drug rotenone, suggesting that combining CC-885 and mitochondria-targeting drugs may be a therapeutic strategy for AML patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Mitofagia/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Talidomida/análogos & derivados , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Sinergismo Farmacológico , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Rotenona/farmacología , Talidomida/farmacología , Ubiquitinación/efectos de los fármacos
19.
Nucleic Acids Res ; 46(2): 823-839, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29228324

RESUMEN

Controlling translation initiation is an efficient way to regulate gene expression at the post-transcriptional level. However, current knowledge regarding regulatory proteins and their modes of controlling translation initiation is still limited. In this study, we employed tandem affinity purification and mass spectrometry to screen for unknown proteins associated with the translation initiation machinery. Ubiquitin specific peptidase 9, X-linked (USP9X), was identified as a novel binding partner, that interacts with the eukaryotic translation initiation factor 4B (eIF4B) in a mRNA-independent manner. USP9X-deficient cells presented significantly impaired nascent protein synthesis, cap-dependent translation initiation and cellular proliferation. USP9X can selectively alter the translation of pro-oncogenic mRNAs, such as c-Myc and XIAP. Moreover, we found that eIF4A1, which is primarily ubiquitinated at Lys-369, is the substrate of USP9X. USP9X dysfunction increases the ubiquitination of eIF4A1 and enhances its degradation. Our results provide evidence that USP9X is a novel regulator of the translation initiation process via deubiquitination of eIF4A1, which offers new insight in understanding the pivotal role of USP9X in human malignancies and neurodevelopmental disorders.


Asunto(s)
Factor 4A Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Proliferación Celular/genética , Factor 4A Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Mutación , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato , Ubiquitina Tiolesterasa/genética
20.
Mol Cell ; 41(2): 131-3, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255722

RESUMEN

In this issue of Molecular Cell, Ahearn et al. (2011) identified FKBP12 as a novel regulator of Ras signaling through its modulation of depalmitoylation of H-Ras and its recycling from plasma membrane to the Golgi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA