Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-17703673

RESUMEN

This paper presents theoretical and experimental developments for the implementation of surface acoustic waves (SAW) sensors able to detect small concentrations of anhydride fluorhydric (HF) acid in air. Solutions based on the use of surface transverse waves (STW) on quartz (YXlt)/36 degrees/90 degrees have been analyzed to evaluate their sensitivity to HF. Devices have been tested first in a NH4F solution to evaluate the kinetics of the reaction. Measurements then were performed under various gaseous conditions to characterize the sensors when they are submitted to different controlled dilutions of HF in air. STW resonators have been successfully tested in different conditions, with capabilities to detect HF concentration much smaller than 1 ppm.

2.
Artículo en Inglés | MEDLINE | ID: mdl-17441597

RESUMEN

The need for high-frequency, wide-band filters has instigated many developments based on combining thin piezoelectric films and high acoustic velocity materials (sapphire, diamond-like carbon, silicon, etc.) to ease the manufacture of devices operating above 2 GHz. In the present work, a technological process has been developed to achieve thin-oriented, single-crystal lithium niobate (LiNbO3) layers deposited on (100) silicon wafers for the fabrication of radio-frequency (RF) surface acoustic wave (SAW) devices. The use of such oriented thin films is expected to favor large coupling coefficients together with a good control of the layer properties, enabling one to chose the best combination of layer orientation to optimize the device. A theoretical analysis of the elastic wave assumed to propagate on such a combination of material is first exposed. Technological aspects then are described briefly. Experimental results are presented and compared to the state of art.


Asunto(s)
Acústica/instrumentación , Cristalización/métodos , Membranas Artificiales , Niobio/química , Óxidos/química , Silicio/química , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Modelos Teóricos , Dosis de Radiación , Ondas de Radio , Radiometría/métodos
3.
Sensors (Basel) ; 7(9): 1992-2003, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28903210

RESUMEN

Mass-sensitive electro-acoustic devices such as surface acoustic wave (SAW)micro-balances, capable to operate with aqueous media are particularly favorable for thedevelopment of biosensors. Their dimensions and physical properties offer a large potentialin biological fluid investigations, especially for measuring physical phenomenon (massdeposition, adsorption, pressure...). In this work, we propose a specific gratingconfiguration to lower the influence of viscosity of fluids which reduces the signal dynamicsof the surface wave transducers. A dedicated liquid cell also has been developed to isolatethe electro-active part of the device. The fabrication of the cell is achieved using theSU-8TMphoto-resist, allowing for manufacturing thick structures preventing any contact between thetested liquids and the transducers. Furthermore, the sensing area has been optimized tooptimize the sensor gravimetric sensitivity. The operation of the sensor is illustrated bydetecting bovine serum albumin (BSA) adsorption in the sensing area.

4.
Ultrasonics ; 43(6): 457-65, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15823320

RESUMEN

We report on the 3-D modelling of periodic arrays of capacitive micromachined ultrasonic transducers (cMUTs) operating in fluid. Specific developments have been performed to model biperiodic transducer arrays and to take into account radiation into any stratified media at the front-side as well as the back-side of the device. The model is based on a periodic finite-element-analysis/boundary-element-method (FEA/BEM). It is applied to micromachined ultrasonic transducers (MUTs), based on silicon-nitride-circular-membrane arrays on a silicon substrate, and operating in water. The spectrum characteristics of MUTs excited in phase are investigated, showing that very-large-band emission is achievable as previously demonstrated by many authors. However, other contributions are also found, depending on the excitation conditions, that do not radiate in the fluid. These contributions are identified as guided modes that could generate significant cross-talk effects. The origin and the nature of these modes is analyzed to gain insight in the actual operation of MUTs.


Asunto(s)
Ultrasonografía/instrumentación , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Miniaturización , Periodicidad , Silicio/química , Compuestos de Silicona/química , Transductores , Agua
5.
Biosens Bioelectron ; 19(6): 595-606, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14683643

RESUMEN

Potentiometric pH sensors based on linear polyethylenimine (L-PEI) and linear polypropylenimine(L-PPI), two synthetic enzymes and biocompatible polymers, films were prepared by electropolymerization of three different monomers: ethylenediamine (EDA), 1,3-diaminopropane (1,3-DAP) and diethylenetriamine (DETA) in order to be used in clinical, dermatological and biological applications, such as in vivo analysis. In a first step a biosensor was tested which consisted in a platinum wire protruded from glass sheath. The polymer film coated on these platinum electrodes showed good linear potentiometric responses to pH changes from pH 3 to 10. Resulting electrodes present both good reversibility and good stability versus time. The effect of the different polymer film thicknesses to potentiometric responses was also studied. This study allowed us to develop a miniaturized pH biosensor in the second step. This sensor was fabricated using photo-lithography, followed by sputtering and lift-off processes, and it included an electronic detection system. We have also successfully studied the potentiometric responses to pH changes of this device over a period of 1 month, and so we propose this new pH micro-biosensor as an alternative to classical pH sensors currently used in dermatology.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles/instrumentación , Electroquímica/instrumentación , Electrodos , Concentración de Iones de Hidrógeno , Polietileneimina/química , Polipropilenos/química , Materiales Biocompatibles/síntesis química , Técnicas Biosensibles/métodos , Electroquímica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Polímeros/síntesis química , Polímeros/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Propiedades de Superficie
6.
Artículo en Inglés | MEDLINE | ID: mdl-20639159

RESUMEN

Interface acoustic waves (IAWs) propagate along the boundary between two perfectly bonded solids. For a leakage- free IAW, all displacement fields must be evanescent along the normal to the boundary inside both solids, but leaky IAWs may also exist depending on the selected combination of materials. When at least one of the bonded solids is a piezoelectric material, the IAW can be excited by an interdigital transducer (IDT) located at the interface, provided one can fabricate the transducer and access the electrical contacts. We discuss here the fabrication and characterization of IAW resonators made by indirect bonding of lithium niobate onto silicon via an organic layer. In our fabrication process, IDTs are first patterned over the surface of a Y-cut lithium niobate wafer. A thin layer of SU-8 photo-resist is then spun over the IDTs and lithium niobate to a thickness below one micrometer. The SU-8-covered lithium niobate wafer then is bonded to a silicon wafer. The stack is subsequently cured and baked to enhance the acoustic properties of the interfacial resist. Measurements of resonators are presented, emphasizing the dependence of propagation losses on the resist properties. Comparison with theoretical computations based on periodic finite element/boundary element analysis allows for explanation of the actual operation of the device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA