Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 24(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627330

RESUMEN

Modern omics techniques reveal molecular structures and cellular networks of tissues and cells in unprecedented detail. Recent advances in single cell analysis have further revolutionized all disciplines in cellular and molecular biology. These methods have also been employed in current investigations on the structure and function of insulin secreting beta cells under normal and pathological conditions that lead to an impaired glucose tolerance and type 2 diabetes. Proteomic and transcriptomic analyses have pointed to significant alterations in protein expression and function in beta cells exposed to diabetes like conditions (e.g., high glucose and/or saturated fatty acids levels). These nutritional overload stressful conditions are often defined as glucolipotoxic due to the progressive damage they cause to the cells. Our recent studies on the rat insulinoma-derived INS-1E beta cell line point to differential effects of such conditions in the phospholipid bilayers in beta cells. This review focuses on confocal microscopy-based detection of these profound alterations in the plasma membrane and membranes of insulin granules and lipid droplets in single beta cells under such nutritional load conditions.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Intolerancia a la Glucosa/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Diabetes Mellitus Tipo 2/fisiopatología , Glucosa/farmacología , Intolerancia a la Glucosa/fisiopatología , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/patología , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Metabolismo de los Lípidos , Lipidómica/métodos , Fosfolípidos/metabolismo , Ratas , Análisis de la Célula Individual
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 783-793, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29654826

RESUMEN

Organisms store fatty acids in triacylglycerols in the form of lipid droplets, or hydrolyze triacylglycerols in response to energetic demands via activation of lipolytic or storage pathways. These pathways are complex sets of sequential reactions that are finely regulated in different cell types. Here we present a high spatial and temporal resolution-based method for the quantification of the turnover of fatty acids into triglycerides in live cells without introducing sample preparation artifacts. We performed confocal spectral imaging of intracellular micropolarity in cultured insulin secreting beta cells to detect micropolarity variations as they occur in time and at different pixels of microscope images. Acquired data are then analyzed in the framework of the spectral phasors technique. The method furnishes a metabolic parameter, which quantitatively assesses fatty acids - triacylglycerols turnover and the activation of lipolysis and storage pathways. Moreover, it provides a polarity profile, which represents the contribution of hyperpolar, polar and non-polar classes of lipids. These three different classes can be visualized on the image at a submicrometer resolution, revealing the spatial localization of lipids in cells under physiological and pathological settings. This new method allows for a fine-tuned, real-time visualization of the turnover of fatty acids into triglycerides in live cells with submicrometric resolution. It also detects imbalances between lipid storage and usage, which may lead to metabolic disorders within living cells and organisms.


Asunto(s)
Polaridad Celular , Microscopía Intravital/métodos , Lípidos/análisis , Lipólisis , Células 3T3-L1 , Animales , Microscopía Intravital/instrumentación , Ratones , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Análisis Espectral/instrumentación , Análisis Espectral/métodos
3.
Endocrinology ; 162(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33341896

RESUMEN

Insulin secretion from pancreatic beta cells is tightly regulated by glucose and paracrine signals within the microenvironment of islets of Langerhans. Extracellular matrix from islet microcapillary endothelial cells (IMEC) affect beta-cell spreading and amplify insulin secretion. This study was aimed at investigating the hypothesis that contact-independent paracrine signals generated from IMEC may also modulate beta-cell insulin secretory functions. For this purpose, conditioned medium (CMp) preparations were prepared from primary cultures of rat IMEC and were used to simulate contact-independent beta cell-endothelial cell communication. Glucose-stimulated insulin secretion (GSIS) assays were then performed on freshly isolated rat islets and the INS-1E insulinoma cell line, followed by fractionation of the CMp, mass spectroscopic identification of the factor, and characterization of the mechanism of action. The IMEC-derived CMp markedly attenuated first- and second-phase GSIS in a time- and dose-dependent manner without altering cellular insulin content and cell viability. Size exclusion fractionation, chromatographic and mass-spectroscopic analyses of the CMp identified the attenuating factor as the enzyme triosephosphate isomerase (TPI). An antibody against TPI abrogated the attenuating activity of the CMp while recombinant human TPI (hTPI) attenuated GSIS from beta cells. This effect was reversed in the presence of tolbutamide in the GSIS assay. In silico docking simulation identified regions on the TPI dimer that were important for potential interactions with the extracellular epitopes of the sulfonylurea receptor in the complex. This study supports the hypothesis that an effective paracrine interaction exists between IMEC and beta cells and modulates glucose-induced insulin secretion via TPI-sulfonylurea receptor-KATP channel (SUR1-Kir6.2) complex attenuating interactions.


Asunto(s)
Células Endoteliales/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Triosa-Fosfato Isomerasa/fisiología , Animales , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Cultivo Primario de Células , Ratas , Ratas Wistar , Triosa-Fosfato Isomerasa/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1351-1360, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30742993

RESUMEN

High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic ß-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat-/- mice the most sensitive to weight gain out of the three strains tested, followed by apoa1-/- mice. Nevertheless, only apoa1-/- mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic ß-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1-/- and lcat-/- mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Apolipoproteína A-I/genética , Glucosa/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Obesidad/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Tejido Adiposo Blanco/patología , Animales , Apolipoproteína A-I/deficiencia , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Homeostasis/genética , Insulina/metabolismo , Resistencia a la Insulina , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Deficiencia de la Lecitina Colesterol Aciltransferasa/etiología , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Lipoproteínas HDL/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Fosforilación Oxidativa , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Transducción de Señal , Termogénesis/genética , Aumento de Peso/genética
5.
Free Radic Biol Med ; 124: 12-20, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29807161

RESUMEN

Non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) results in the formation of various α,ß-unsaturated aldehydes, of which 4-hydroxyalkenals are abundant. The propensity of n-6 PUFA, such as linoleic acid, γ-linolenic acid and arachidonic acid, to undergo radical-induced peroxidation and generate 4-hydroxy-2E-nonenal (4-HNE) has been widely demonstrated. The ability of the latter to form covalent adducts with macromolecules and modify cellular functions has been linked to numerous pathological processes. Concomitantly, evidence has accumulated on specific signaling properties of low concentrations of 4-HNE that may induce hormetic and protective responses to peroxidation stress in cells. It has long been known that peroxidation of PUFA, and particularly arachidonic acid, also give rise to 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), which is more chemically reactive than 4-HNE. Few studies on 4-HDDE revealed its ability to avidly interact covalently with electronegative moieties in macromolecules and to its ability to selectively activate the transcriptional regulator Peroxisome Proliferator-Activated Receptor (PPAR)-ß/δ. The research on 4-HDDE has been impeded due to the lack of available pure 4-HDDE and antibodies that recognize 4-HDDE-modified epitopes in proteins. The purpose of this study was to employ an established procedure to synthesize 4-HDDE and use it to create and characterize a monoclonal antibody against 4-HDDE-modified proteins and establish its application for ELISA and immunohistochemical analysis of cells and tissues and further expand lipid peroxidation research.


Asunto(s)
Aldehídos/metabolismo , Anticuerpos Monoclonales/metabolismo , Aorta/metabolismo , Riñón/metabolismo , Peroxidación de Lípido , Albúmina Sérica Bovina/metabolismo , Adulto , Aldehídos/química , Animales , Anticuerpos Monoclonales/inmunología , Aorta/inmunología , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Femenino , Humanos , Técnicas In Vitro , Riñón/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo , PPAR delta/metabolismo , Ratas , Ratas Wistar , Albúmina Sérica Bovina/química , Transducción de Señal
6.
Mol Aspects Med ; 49: 49-77, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27012748

RESUMEN

Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,ß-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.


Asunto(s)
Hormesis , Células Secretoras de Insulina/metabolismo , Peroxidación de Lípido , Animales , Complicaciones de la Diabetes/etiología , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Progresión de la Enfermedad , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Oxidación-Reducción , Estrés Oxidativo , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Chem Commun (Camb) ; 52(11): 2350-3, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26731129

RESUMEN

The phenol-diamide compound, 5-(tert-butyl)-2-hydroxy-N1,N3-bis(2-hydroxyethyl)isophthalamide (), is water-soluble, non-cytotoxic, and capable of both, trapping ROS species and chelating Cu(ii) and Fe(iii) ions; these combined properties confer a protective effect against ROS induced cell death.


Asunto(s)
Quelantes/química , Depuradores de Radicales Libres/química , Agua/química , Solubilidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-23834207

RESUMEN

Riluzole is the only approved ALS drug. Riluzole influences several cellular pathways, but its exact mechanism of action remains unclear. Our goal was to study the drug's influence on the glucose transport rate in two ALS relevant cell types, neurons and myotubes. Stably transfected wild-type or mutant G93A human SOD1 NSC-34 motor neuron-like cells and rat L6 myotubes were exposed to riluzole. The rate of glucose uptake, translocation of glucose transporters to the cell's plasma membrane and the main glucose transport regulatory proteins' phosphorylation levels were measured. We found that riluzole increases the glucose transport rate and up-regulates the translocation of glucose transporters to plasma membrane in both types of cells. Riluzole leads to AMPK phosphorylation and to the phosphorylation of its downstream target, AS-160. In conclusion, increasing the glucose transport rate in ALS affected cells might be one of the mechanisms of riluzole's therapeutic effect. These findings can be used to rationally design and synthesize novel anti-ALS drugs that modulate glucose transport in neurons and skeletal muscles.


Asunto(s)
Adenilato Quinasa/fisiología , Proteínas Facilitadoras del Transporte de la Glucosa/efectos de los fármacos , Glucosa/metabolismo , Neuronas Motoras/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Riluzol/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Neuronas Motoras/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética
9.
J Med Chem ; 56(17): 6709-18, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23984871

RESUMEN

Oxidative stress directly correlates with the early onset of vascular complications and the progression of peripheral insulin resistance in diabetes. Accordingly, exogenous antioxidants augment insulin sensitivity in type 2 diabetic patients and ameliorate its clinical signs. Herein, we explored the unique structural and functional properties of the abiotic cyclic D,L-α-peptide architecture as a new scaffold for developing multifunctional agents to catalytically decompose ROS and stimulate glucose uptake. We showed that His-rich cyclic D,L-α-peptide 1 is very stable under high H2O2 concentrations, effectively self-assembles to peptide nanotubes, and increases the uptake of glucose by increasing the translocation of GLUT1 and GLUT4. It also penetrates cells and protects them against oxidative stress induced under hyperglycemic conditions at a much lower concentration than α-lipoic acid (ALA). In vivo studies are now required to probe the mode of action and efficacy of these abiotic cyclic D,L-α-peptides as a novel class of antihyperglycemic compounds.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Péptidos Cíclicos/farmacología , Animales , Línea Celular , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Péptidos Cíclicos/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA