Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7980): 753-759, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612509

RESUMEN

Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape1. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge2, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce3. So far, precision donor-acceptor recognition motifs remain crucial in enantioselective photocatalyst design4. Here we show that chiral Al-salen complexes, which have well-defined photophysical properties, can be used for the efficient photochemical deracemization5 of cyclopropyl ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) augments the reactivity of the commercial catalyst to enable reactivity and enantioselectivity to be regulated simultaneously. This circumvents the need for tailored catalyst-substrate recognition motifs. It is predicted that this study will stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in excited-state processes, ultimately leading to the identification of candidates that may be considered 'privileged' in both reactivity models.

2.
Nature ; 605(7910): 477-482, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314833

RESUMEN

For more than one century, photochemical [2+2]-cycloadditions have been used by synthetic chemists to make cyclobutanes, four-membered carbon-based rings. In this reaction, typically two olefin subunits (two π-electrons per olefin) cyclize to form two new C-C σ-bonds. Although the development of photochemical [2+2]-cycloadditions has made enormous progress within the last century, research has been focused on such [2π+2π]-systems, in which two π-bonds are converted into two new σ-bonds1,2. Here we report an intermolecular [2+2]-photocycloaddition that uses bicyclo[1.1.0]butanes as 2σ-electron reactants3-7. This strain-release-driven [2π+2σ]-photocycloaddition reaction was realized by visible-light-mediated triplet energy transfer catalysis8,9. A simple, modular and diastereoselective synthesis of bicyclo[2.1.1]hexanes from heterocyclic olefin coupling partners, namely coumarins, flavones and indoles, is disclosed. Given the increasing importance of bicyclo[2.1.1]hexanes as bioisosteres-groups that convey similar biological properties to those they replace-in pharmaceutical research and considering their limited access10,11, there remains a need for new synthetic methodologies. Applying this strategy enabled us to extend the intermolecular [2+2]-photocycloadditions to σ-bonds and provides previously inaccessible structural motifs.

3.
J Am Chem Soc ; 146(4): 2789-2797, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38236061

RESUMEN

Dearomative photocycloaddition of monocyclic arenes is an appealing strategy for comprehending the concept of "escape from flatland". This brings the replacement of readily available planar aromatic hydrocarbon units with a 3D fused bicyclic core with sp3-enriched carbon units. Herein, we outline an intermolecular approach for the dearomative photocycloaddition of phenols. In order to circumvent the ground-state aromaticity and to construct conformationally restrained building blocks, bicyclo[1.1.0]butanes were chosen as coupling partners. This dearomative approach renders straightforward access to a bicyclo[2.1.1]hexane unit fused to a cyclic enone moiety, which further contributed as a synthetic linchpin for postmodifications. Mechanistic experiment advocates for a plausible onset from both the reactants, depending on the redox potential.

4.
J Am Chem Soc ; 146(9): 5864-5871, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38378184

RESUMEN

Sulfur, alongside oxygen and nitrogen, holds a prominent position as one of the key heteroatoms in nature and medicinal chemistry. Its significance stems from its ability to adopt different oxidation states, rendering it valuable as both a polarity handle and a hydrogen bond donor/acceptor. Nevertheless, the poisonous nature of its free electron pairs makes sulfur containing substrates inaccessible for many catalytic protocols. Strong and (at low temperatures) irreversible chemisorption to the catalyst's surface is in particular detrimental for heterogeneous catalysts, possessing only few catalytically active sites. Herein, we present a novel heterogeneous Ru-S catalyst that tolerates multiple sulfur functionalities, including thioethers, thiophenes, sulfoxides, sulfones, sulfonamides, and sulfoximines, in the hydrogenation of quinolines. The utility of the products was further demonstrated by subsequent diversifications of the sulfur functionalities.

5.
J Am Chem Soc ; 146(23): 16237-16247, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38811005

RESUMEN

As the chemistry that surrounds the field of strained hydrocarbons, such as bicyclo[1.1.0]butane, continues to expand, it becomes increasingly advantageous to develop alternative reactivity modes that harness their unique properties to access new regions of chemical space. Herein, we report the use of photoredox catalysis to promote the single-electron oxidation of bicyclo[1.1.0]butanes. The synthetic utility of the resulting radical cations is highlighted by their ability to undergo highly regio- and diastereoselective [2π + 2σ] cycloaddition reactions. The most notable feature of this transformation is the breadth of alkene classes that can be employed, including nonactivated alkenes, which have so far been elusive for previous strategies. A rigorous mechanistic investigation, in conjunction with DFT computation, was undertaken in order to better understand the physical nature of bicyclo[1.1.0]butyl radical cations and thus provides a platform from which further studies into the synthetic applications of these intermediates can be built upon.

6.
J Am Chem Soc ; 146(25): 17180-17188, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38875460

RESUMEN

Chiral pyrrolidines are common structural motives in natural products as well as active pharmaceutical ingredients, explaining the need for methods for their enantioselective synthesis. While several, often metal-catalyzed, methods for their preparation do exist, the enantioselective synthesis of pyrrolidines containing quaternary stereocenters remains challenging. Herein, we report a BroÌ·nsted acid-catalyzed intramolecular hydroamination that provides such pyrrolidines from simple starting materials in high yield and enantioselectivity. Key to an efficient reaction was the use of an electron-deficient protective group on nitrogen, the common nosyl-protecting group, to avoid deactivation of the BroÌ·nsted acid by deprotonation. The reaction proceeds as a stereospecific anti-addition indicating a concerted reaction. Furthermore, kinetic studies show Michaelis-Menten behavior, suggesting the formation of a precomplex similar to those observed in enzymatic catalysis.

7.
J Am Chem Soc ; 146(15): 10899-10907, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569596

RESUMEN

In the long-standing quest to synthesize fundamental building blocks with key functional group motifs, photochemistry in the recent past has comprehensively established its attractiveness. Amino alcohols are not only functionally diverse but are ubiquitous in the biologically active realm of compounds. We developed bench-stable bifunctional reagents that could then access the sparsely reported γ-amino alcohols directly from feedstock alkenes through energy transfer (EnT) photocatalysis. A designed 1,3-linkage across alkenes is made possible by the intervention of a radical Brook rearrangement that takes place downstream to the EnT-mediated homolysis of our reagent(s). A combination of experimental mechanistic investigations and detailed computational studies (DFT) indicates a radical chain propagated reaction pathway.

8.
J Am Chem Soc ; 146(8): 5232-5241, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350439

RESUMEN

In pursuit of potent pharmaceutical candidates and to further improve their chemical traits, small ring systems can serve as a potential starting point. Small ring units have the additional merit of loaded strain at their core, making them suitable reactants as they can capitalize on this intrinsic driving force. With the introduction of cyclobutenone as a strained precursor to ketene, the photocycloaddition with another strained unit, bicyclo[1.1.0]butane (BCB), enables the reactivity of both π-units in the transient ketene. This double strain-release driven [2π+2σ]-photocycloaddition promotes the synthesis of diverse heterobicyclo[2.1.1]hexane units, a pharmaceutically relevant bioisostere. The effective reactivity under catalyst-free conditions with a high functional group tolerance defines its synthetic utility. Experimental mechanistic studies and density functional theory (DFT) calculations suggest that the [2π+2σ]-photocycloaddition takes place via a triplet mechanism.

9.
Chemistry ; : e202400541, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739757

RESUMEN

The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.

10.
Angew Chem Int Ed Engl ; 63(21): e202402730, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38441241

RESUMEN

Synthesis of bicyclic scaffolds has emerged as an important research topic in modern drug development because they can serve as saturated bioisosters to enhance the physicochemical properties and metabolic profiles of drug candidates. Here we report a remarkably simple silver-enabled strategy to access polysubstituted 3-azabicyclo[3.1.1]heptanes in a single operation from readily accessible bicyclobutanes (BCBs) and isocyanides. The process is proposed to involve a formal (3+3)/(3+2)/retro-(3+2) cycloaddition sequence. This novel protocol allows for rapid generation of molecular complexity from simple starting materials, and the products can be easily derivatized, further enriching the BCB cycloaddition chemistry and the growing set of valuable sp3-rich bicyclic building blocks.

11.
Angew Chem Int Ed Engl ; 63(22): e202404233, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38545942

RESUMEN

Configurationally-defined dienes are pervasive across the bioactive natural product spectrum, where they typically manifest themselves as sorbic acid-based fragments. These C5 motifs reflect the biosynthesis algorithms that facilitate their construction. To complement established biosynthetic paradigms, a chemical platform to facilitate the construction of stereochemically defined, functionalizable dienes by light-enabled isomerization has been devised. Enabled by selective energy transfer catalysis, a variety of substituted ß-boryl sorbic acid derivatives can be isomerized in a regio- and stereo-selective manner (up to 97 : 3). Directionality is guided by a stabilizing nO→pB interaction in the product: this constitutes a formal anti-hydroboration of the starting alkyne. This operationally simple reaction employs low catalyst loadings (1 mol %) and is complete in 1 h. X-ray analysis supports the hypothesis that the nO→pB interaction leads to chromophore bifurcation: this provides a structural foundation for selective energy transfer.

12.
Angew Chem Int Ed Engl ; : e202404275, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687058

RESUMEN

Herein, we present a radical cascade addition cyclization sequence to access quinoline-based benzophosphole oxides from ortho-alkynylated aromatic phosphine oxides using various aryl isonitriles as radical acceptors and inexpensive tert-butyl-hydroperoxide (TBHP) as a terminal oxidant in the presence of a catalytic amount of silver acetate. Alternatively, the same cascade can be realized through a sustainable photochemical approach utilizing 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as an organic photocatalyst at room temperature. The introduced modular approach shows broad functional group tolerance and offers straightforward access to complex P,N-containing polyheterocyclic arenes. These novel π-extended benzophosphole oxides exhibit interesting photophysical and electrochemical properties such as absorption in the visible region, emission and reversible reduction at low potentials, which makes them promising for potential materials science applications. The photophysical properties can further be tuned by the addition of external Lewis and Brønsted acids.

13.
Angew Chem Int Ed Engl ; 63(22): e202403957, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38482736

RESUMEN

Cyclic ß,ß-difluoro-carbonyl compounds have a venerable history as drug discovery leads, but limitations in the synthesis arsenal continue to impede chemical space exploration. This challenge is particularly acute in the arena of fluorinated medium rings where installing the difluoromethylene unit subtly alters the ring conformation by expanding the internal angle (∠C-CF2-C>∠C-CH2-C): this provides a handle to modulate physicochemistry (e.g. pKa). To reconcile this disparity, a highly modular ring expansion has been devised that leverages simple α,ß-unsaturated esters and amides, and processes them to one-carbon homologated rings with concomitant geminal difluorination (6 to 10 membered rings, up to 95 % yield). This process is a rare example of the formal difluorination of an internal alkene and is enabled by sequential I(III)-enabled O-activation. Validation of enantioselective catalysis in the generation of unprecedented medium ring scaffolds is reported (up to 93 : 7 e.r.) together with X-ray structural analyses and product derivatization.

14.
J Am Chem Soc ; 145(29): 15695-15701, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37435957

RESUMEN

The highly enantioselective and complete hydrogenation of protected indoles and benzofurans has been developed, affording facile access to a range of chiral three-dimensional octahydroindoles and octahydrobenzofurans, which are prevalent in many bioactive molecules and organocatalysts. Remarkably, we are in control of the nature of the ruthenium N-heterocyclic carbene complex and employed the complex as both homogeneous and heterogeneous catalysts, providing new avenues for its potential applications in the asymmetric hydrogenation of more challenging aromatic compounds.

15.
J Am Chem Soc ; 145(16): 8770-8775, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37058606

RESUMEN

Alkylboronic pinacol esters (APEs) are highly versatile reagents in organic synthesis. However, the direct generation of alkyl radicals from commonly used, bench-stable APEs has not been well explored. In this communication, alkyl radical generation from APEs through reaction with aminyl radicals is reported. The aminyl radicals are readily generated by visible-light-induced homolytic cleavage of the N-N bond in N-nitrosamines, and C radical generation occurs through nucleohomolytic substitution at boron. As an application, the highly efficient photochemical radical alkyloximation of alkenes with APEs and N-nitrosamines under mild conditions is presented. A wide range of primary, secondary, and tertiary APEs engage in this transformation that is easily scaled up.

16.
J Am Chem Soc ; 145(15): 8665-8676, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37029692

RESUMEN

Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.

17.
J Am Chem Soc ; 145(4): 2364-2374, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652725

RESUMEN

Sulfur(VI) fluoride exchange (SuFEx) gives rise to a plethora of high-valent sulfur linkages; however, the availability of (aliphatic) sulfonyl fluoride manifolds lag behind, owing to the limited sources of introducing the SO2F moiety via a classical two-electron approach. Recently, radical-based methodologies have emerged as a complementary strategy to increase the diversity of accessible click partners. In this work, synthesis of a bench-stable sulfamoyl fluoride reagent is presented, which may undergo sigma-bond homolysis upon visible-light-induced sensitization to form protected ß-amino sulfonyl fluorides from alkene feedstocks. Notably, this offers an appealing strategy to access various building blocks for peptido sulfonyl fluorides, relevant in a medicinal chemistry context, as well as an intriguing entry to ß-ammonium sulfonates and ß-sultams, from alkenes. Densely functionalized 1,3-sultones were obtained by employing allyl alcohols as substrates. Surprisingly, allyl chloride-derived ß-imino sulfonyl fluoride underwent S-O bond formation and ring closure to yield rigid cyclopropyl ß-imino sulfonate ester under SuFEx conditions. Furthermore, by engaging a thiol-based hydrogen atom donor in the reaction, the reactivity of the same reagent can be tuned toward the direct synthesis of aliphatic sulfonyl fluorides. Mechanistic experiments indicate an energy transfer (EnT)-mediated process. The transient sulfonyl fluoride radical adds to the alkene and product formation occurs upon either radical-radical coupling or hydrogen atom transfer (HAT), respectively.

18.
J Am Chem Soc ; 145(43): 23771-23780, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852210

RESUMEN

Given the importance of cyclic frameworks in molecular scaffolds and drug discovery, it is intriguing to precisely forge and manipulate ring systems in synthetic chemistry. In this field, the intermolecular synthesis of densely substituted cyclobutanes with precise diastereocontrol under simple reaction conditions remains a challenge. Herein, a photoredox strategy for the difunctionalization of bicyclo[1.1.0]butanes (BCBs) under high regio- and syn-selectivity is disclosed. C-S σ-bond cleavage of partially unsaturated sulfur-containing bifunctional reagents in an overall strain-release-driven process enables the thio-alkynylation, -alkenylation, and -allylation of BCBs under mild conditions and demonstrates the generality of this protocol. Mechanistic studies suggest that the intermediacy of cyclic distonic radical cations might be key for the efficient scission of C-S σ-bonds and the origin of diastereoselectivity.

19.
J Am Chem Soc ; 145(43): 23814-23823, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852246

RESUMEN

Radical remote 1,n-difunctionalization reactions (n > 2) of alkenes are powerful tools to efficiently introduce functional groups with selected distances into target molecules. Among these reactions, 1,5-difunctionalizations are an important subclass, leading to sought-after scaffolds, but typically suffer from tailored starting materials and strict limitations for the formed functional group in 2-position. Seeking to address these issues and to make radical 1,5-difunctionalizations of alkenes more applicable, we report a novel three-component 1,2,5-trifunctionalization reaction between imine-based bifunctional reagents and two distinct alkenes, driven by visible light energy transfer-catalysis. Key to achieving this selective one-step installation of three different functional groups via the choreographed formation of four bonds was the utilization of a 1,2-boron shift and the rigorous capitalization of radical polarities and stabilities. Thorough mechanistic studies were carried out, and the synthetic utility of the obtained products was demonstrated by various downstream modifications. Notably, in addition to the functionalization of individual functional groups, their interplay gave rise to a unique array of cyclic products.

20.
J Am Chem Soc ; 145(22): 12324-12332, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232562

RESUMEN

Dearomative photocycloadditions are valuable chemical transformations, serving as an efficient platform to create three-dimensional molecular complexity. However, the photolability of the original addition product especially within the context of ortho cycloadditions often causes undesired consecutive rearrangements, rendering these ortho cycloadducts elusive. Herein, we report an ortho-selective intermolecular photocycloaddition of bicyclic aza-arenes including (iso)quinolines, quinazolines, and quinoxalines by utilizing a strain-release approach. With bicyclo[1.1.0]butanes as coupling partners, this dearomative [2π + 2σ] cycloaddition enables the straightforward construction of C(sp3)-rich bicyclo[2.1.1]hexanes directly connected to N-heteroarenes. Photophysical experiments and DFT calculations revealed the origin of the [2π + 2σ] selectivity and indicate that, in addition to the originally proposed energy transfer or direct excitation pathways, a chain reaction mechanism is operative depending on the reaction conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA