Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 23(1): 211, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996109

RESUMEN

Elevated ACE expression in tissues (reflected by blood ACE levels) is associated with increased risk of cardiovascular diseases and is also a marker for granulomatous diseases. We developed a new approach for characterization of ACE status in the blood-ACE phenotyping and established normal values of ACE levels 50-150% of control pooled plasma. ACE phenotyping was performed in citrated plasma of 120 patients with known interstitial lung diseases. In the 1st set of 100 patients we found 22 patients with ACE levels > 150%; ACE phenotyping also objectively identified the presence of ACE inhibitors in the plasma of 15 patients. After excluding these patients and patient with ACE mutation that increases ACE shedding, 17 patients were identified as a suspicious for systemic sarcoidosis based on elevation of blood ACE (> 150% of mean). A new parameter that we have established-ACE immunoreactivity (with mAb 9B9)-allowed us to detect 22 patients with decreased values (< 80%) of this parameter, which may indicate the presence of ACE in the blood that originates from macrophages/dendritic cells of granulomas. In the remaining 20 patients, this new parameter (mAbs binding/activity ratio) was calculated using 3 mAbs (9B9, 3A5 and i1A8-having overlapping epitopes), and 8 patients were identified as having decreases in this parameter, thus increasing dramatically the sensitivity for detection of patients with systemic sarcoidosis. Whole body PET scan confirmed extrapulmonary granulomas in some patients with lower immunoreactivity towards anti-ACE mAbs. ACE phenotyping has novel potential to noninvasively detect patients with systemic sarcoidosis.


Asunto(s)
Peptidil-Dipeptidasa A , Sarcoidosis , Anticuerpos Monoclonales/metabolismo , Epítopos , Granuloma , Humanos , Peptidil-Dipeptidasa A/genética , Sarcoidosis/diagnóstico , Sarcoidosis/genética
2.
Am J Respir Cell Mol Biol ; 58(5): 604-613, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29077485

RESUMEN

Profound lung vascular permeability is a cardinal feature of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI), two syndromes known to centrally involve the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier dysregulation. Two main splice variants, nmMLCK1 and nmMLCK2, are well represented in human lung endothelial cells and encoded by MYLK, and they differ only in the presence of exon 11 in nmMLCK1, which contains critical phosphorylation sites (Y464 and Y471) that influence nmMLCK enzymatic activity, cellular translocation, and localization in response to vascular agonists. We recently demonstrated the functional role of SNPs in altering MYLK splicing, and in the present study we sought to identify the role of splicing factors in the generation of nmMLCK1 and nmMLCK2 spliced variants. Using bioinformatic in silico approaches, we identified a putative binding site for heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a recognized splicing factor. We verified hnRNPA1 binding to MYLK by gel shift analyses and that hnRNPA1 gene and protein expression is upregulated in mouse lungs obtained from preclinical models of ARDS and VILI and in human endothelial cells exposed to 18% cyclic stretch, a model that reproduces the excessive mechanical stress observed in VILI. Using an MYLK minigene approach, we established a direct role of hnRNPA1 in MYLK splicing and in the context of 18% cyclic stretch. In summary, these data indicate an important regulatory role for hnRNPA1 in MYLK splicing, and they increase understanding of MYLK splicing in the regulation of lung vascular integrity during acute lung inflammation and excessive mechanical stress, such as that observed in ARDS and VILI.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales/enzimología , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Pulmón/irrigación sanguínea , Quinasa de Cadena Ligera de Miosina/metabolismo , Síndrome de Dificultad Respiratoria/enzimología , Lesión Pulmonar Inducida por Ventilación Mecánica/enzimología , Animales , Sitios de Unión , Proteínas de Unión al Calcio/genética , Permeabilidad Capilar , Modelos Animales de Enfermedad , Impedancia Eléctrica , Exones , Células HEK293 , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , Intrones , Mecanotransducción Celular , Ratones , Quinasa de Cadena Ligera de Miosina/genética , Unión Proteica , Receptores de Estiramiento Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
3.
Mol Genet Metab ; 123(4): 501-510, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29478818

RESUMEN

BACKGROUND: Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. METHODS: ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. RESULTS: We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. CONCLUSIONS: The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease.


Asunto(s)
Células Dendríticas/enzimología , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/patología , Granuloma/enzimología , Macrófagos/enzimología , Peptidil-Dipeptidasa A/metabolismo , Células Cultivadas , Humanos , Hígado/enzimología , Fenotipo , Bazo/enzimología
4.
Am J Respir Cell Mol Biol ; 56(1): 29-37, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27529643

RESUMEN

The nonmuscle (nm) myosin light-chain kinase isoform (MLCK), encoded by the MYLK gene, is a vital participant in regulating vascular barrier responses to mechanical and inflammatory stimuli. We determined that MYLK is alternatively spliced, yielding functionally distinct nmMLCK splice variants including nmMLCK2, a splice variant highly expressed in vascular endothelial cells (EC) and associated with reduced EC barrier integrity. We demonstrated previously that the nmMLCK2 variant lacks exon 11, which encodes a key regulatory region containing two differentially phosphorylated tyrosine residues (Y464 and Y471) that influence vascular barrier function during inflammation. In this study, we used minigene constructs and RT-PCR to interrogate biophysical factors (mechanical stress) and genetic variants (MYLK single-nucleotide polymorphisms [SNPs]) that are potentially involved in regulating MYLK alternative splicing and nmMLCK2 generation. Human lung EC exposed to pathologic mechanical stress (18% cyclic stretch) produced increased nmMLCK2 expression relative to levels of nmMLCK1 with alternative splicing significantly influenced by MYLK SNPs rs77323602 and rs147245669. In silico analyses predicted that these variants would alter exon 11 donor and acceptor sites for alternative splicing, computational predictions that were confirmed by minigene studies. The introduction of rs77323602 favored wild-type nmMLCK expression, whereas rs147245669 favored alternative splicing and deletion of exon 11, yielding increased nmMLCK2 expression. Finally, lymphoblastoid cell lines selectively harboring these MYLK SNPs (rs77323602 and rs147245669) directly validated SNP-specific effects on MYLK alternative splicing and nmMLCK2 generation. Together, these studies demonstrate that mechanical stress and MYLK SNPs regulate MYLK alternative splicing and generation of a splice variant, nmMLCK2, that contributes to the severity of inflammatory injury.


Asunto(s)
Empalme Alternativo/genética , Quinasa de Cadena Ligera de Miosina/genética , Polimorfismo de Nucleótido Simple/genética , Estrés Mecánico , Secuencia de Bases , Biología Computacional , Simulación por Computador , Secuencia de Consenso/genética , Exones/genética , Células HEK293 , Humanos , Linfocitos/metabolismo , Sitios de Empalme de ARN/genética , Reproducibilidad de los Resultados
5.
Biomedicines ; 12(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38255267

RESUMEN

We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer's disease because amyloid Aß42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF ACE mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known ACE mutations already associated with AD. The combined frequency of >400 of these LoF-damaging ACE mutations in the general population is quite significant-up to 5%-comparable to the frequency of AD in the population > 70 y.o., which indicates that the contribution of low ACE in the development of AD could be under appreciated. Our analysis suggests several mechanisms by which ACE mutations may be associated with Alzheimer's disease. Systematic analysis of blood ACE levels in patients with all ACE mutations is likely to have clinical significance because available sequencing data will help detect persons with increased risk of late-onset Alzheimer's disease. Patients with transport-deficient ACE mutations (about 20% of damaging ACE mutations) may benefit from preventive or therapeutic treatment with a combination of chemical and pharmacological (e.g., centrally acting ACE inhibitors) chaperones and proteosome inhibitors to restore impaired surface ACE expression, as was shown previously by our group for another transport-deficient ACE mutation-Q1069R.

6.
Biomedicines ; 12(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790902

RESUMEN

Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by blood ACE levels) is associated with an increased risk of cardiovascular diseases. Elevated blood ACE is also a marker for granulomatous diseases. Decreased blood ACE activity is becoming a new risk factor for Alzheimer's disease. We applied our novel approach-ACE phenotyping-to characterize pairs of tissues (lung, heart, lymph nodes) and serum ACE in 50 patients. ACE phenotyping includes (1) measurement of ACE activity with two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of these substrates (ZPHL/HHL ratio); (3) determination of ACE immunoreactive protein levels using mAbs to ACE; and (4) ACE conformation with a set of mAbs to ACE. The ACE phenotyping approach in screening format with special attention to outliers, combined with analysis of sequencing data, allowed us to identify patient with a unique ACE phenotype related to decreased ability of inhibition of ACE activity by albumin, likely due to competition with high CCL18 in this patient for binding to ACE. We also confirmed recently discovered gender differences in sialylation of some glycosylation sites of ACE. ACE phenotyping is a promising new approach for the identification of ACE phenotype outliers with potential clinical significance, making it useful for screening in a personalized medicine approach.

7.
PLoS One ; 19(10): e0308289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39378208

RESUMEN

BACKGROUND: Analysis of existing mutations of Angiotensin-I-Converting Enzyme (ACE) led us to hypothesize that the carriers of damaging ACE mutations (accompanied by low ACE levels) could be at risk for the development of late-onset Alzheimer's disease (AD). METHODOLOGY/PRINCIPAL FINDINGS: We quantified blood ACE levels in EDTA-containing plasma from 15 patients with 11 different heterozygous ACE mutations and estimated the effects of these mutations on ACE phenotypes, using a set of mAbs to ACE and two ACE substrates. We confirmed prior observations that the relatively frequent Y215C mutation in the N domain of ACE (present in ~1% of the population) is associated with both Alzheimer's disease (AD) and reduced plasma levels of ACE (~50% of controls), indicating that it likely results in a transport-deficient protein. In addition, we identified another 4 mutations in both ACE domains (M118T, C734Y, V992M and V997M) which are also associated with decreased ACE levels in the blood, and, thus, could be putative risk factors for late-onset AD. One of these mutations, C734Y, is likely transport-deficient, while the other mutations appear to influence ACE catalytic properties. The precipitation of mutant M118T by mAb 2D1 and ACE mutant C734Y by mAb 3F10 increased 2-3-fold compared to native ACE, and therefore, these mAbs could be markers of these mutations. Also, we identified a mutation I989T, which is associated with increased ACE levels in the blood. CONCLUSIONS/SIGNIFICANCE: Conducting a systematic analysis of blood ACE levels in patients with ACE mutations holds promise for identifying individuals with low blood ACE levels. Such individuals may be at increased risk for late-onset AD. The patients with transport-deficient ACE mutations may benefit from therapeutic treatment with a combination of chemical and pharmacological chaperones and proteasome inhibitors, as was demonstrated previously using a cell model of the transport-deficient ACE mutation, Q1069R [Danilov et al, PLoS One, 2010].


Asunto(s)
Enfermedad de Alzheimer , Mutación , Peptidil-Dipeptidasa A , Fenotipo , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/sangre , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/sangre , Femenino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años
8.
Biomedicines ; 12(10)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39457722

RESUMEN

BACKGROUNDS: Our recent analysis of 1200+ existing missense ACE mutations revealed that 400+ mutations are damaging and led us to hypothesize that carriers of heterozygous loss-of-function (LoF) ACE mutations (which result in low ACE levels) could be at risk for the development of late-onset Alzheimer's disease (AD). METHODS: Here, we quantified blood ACE levels in EDTA plasma from 41 subjects with 10 different heterozygous ACE mutations, as well as 33 controls, and estimated the effect of these mutations on ACE phenotype using a set of mAbs to ACE and two ACE substrates. RESULTS: We found that relatively frequent (~1%) AD-associated ACE mutations in the N domain of ACE, Y215C, and G325R are truly damaging and likely transport-deficient, with the ACE levels in plasma at only ~50% of controls. Another AD-associated ACE mutation, R1250Q, in the cytoplasmic tail, did not cause a decrease in ACE and likely did not affect surface ACE expression. We have also developed a method to identify patients with anti-catalytic mutations in the N domain. These mutations may result in reduced degradation of amyloid beta peptide Aß42, an important component for amyloid deposition. Consequently, these could pose a risk factor for the development of AD. CONCLUSIONS: Therefore, a systematic analysis of blood ACE levels in patients with all ACE mutations has the potential to identify individuals at an increased risk of late-onset AD. These individuals may benefit from future preventive or therapeutic interventions involving a combination of chemical and pharmacological chaperones, as well as proteasome inhibitors, aiming to enhance ACE protein traffic. This approach has been previously demonstrated in our cell model of the transport-deficient ACE mutation Q1069R.

9.
Mol Ther ; 20(8): 1516-28, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22525513

RESUMEN

Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Terapia Genética/métodos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Hipoxia/fisiopatología , Triptófano Hidroxilasa/metabolismo , Adenoviridae/genética , Animales , Bovinos , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar , Vectores Genéticos/genética , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Ratas , Triptófano Hidroxilasa/genética
10.
Biomedicines ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36831070

RESUMEN

Background: The angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated blood ACE is a marker for granulomatous diseases and elevated ACE expression in tissues is associated with increased risk of cardiovascular diseases. Objective and Methodology: We applied a novel approach -ACE phenotyping-to find a reason for conformationally impaired ACE in the blood of one particular donor. Similar conformationally altered ACEs were detected previously in 2-4% of the healthy population and in up to 20% of patients with uremia, and were characterized by significant increase in the rate of angiotensin I hydrolysis. Principal findings: This donor has (1) significantly increased level of endogenous ACE inhibitor in plasma with MW less than 1000; (2) increased activity toward angiotensin I; (3) M71V mutation in ABCG2 (membrane transporter for more than 200 compounds, including bilirubin). We hypothesize that this patient may also have the decreased level of free bilirubin in plasma, which normally binds to the N domain of ACE. Analysis of the local conformation of ACE in plasma of patients with Gilbert and Crigler-Najjar syndromes allowed us to speculate that binding of mAbs 1G12 and 6A12 to plasma ACE could be a natural sensor for estimation of free bilirubin level in plasma. Totally, 235 human plasma/sera samples were screened for conformational changes in soluble ACE. Conclusions/Significance: ACE phenotyping of plasma samples allows us to identify individuals with conformationally altered ACE. This type of screening has clinical significance because this conformationally altered ACE could not only result in the enhancement of the level of angiotensin II but could also serve as an indicator of free bilirubin levels.

11.
Biomedicines ; 11(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36979933

RESUMEN

BACKGROUND: Angiotensin-converting enzyme (ACE) is highly expressed in renal proximal tubules, but ACE activity/levels in the urine are at least 100-fold lower than in the blood. Decreased proximal tubular ACE has been associated with renal tubular damage in both animal models and clinical studies. Because ACE is shed into urine primarily from proximal tubule epithelial cells, its urinary ACE measurement may be useful as an index of tubular damage. OBJECTIVE AND METHODOLOGY: We applied our novel approach-ACE phenotyping-to characterize urinary ACE in volunteer subjects. ACE phenotyping includes (1) determination of ACE activity using two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of the two substrates (ZPHL/HHL ratio); (3) quantification of ACE immunoreactive protein levels; and (4) fine mapping of local ACE conformation with mAbs to ACE. PRINCIPAL FINDINGS: In normal volunteers, urinary ACE activity was 140-fold less than in corresponding plasma/serum samples and did not differ between males and females. However, urinary ACE immunoreactivity (normalized binding of 25 mAbs to different epitopes) was strongly sex-dependent for the several mAbs tested, an observation likely explained by differences in tissue ACE glycosylation/sialylation between males and females. Urinary ACE phenotyping also allowed the identification of ACE outliers. In addition, daily variability of urinary ACE has potential utility as a feedback marker for dieting individuals pursuing weight loss. CONCLUSIONS/SIGNIFICANCE: Urinary ACE phenotyping is a promising new approach with potential clinical significance to advance precision medicine screening techniques.

12.
Arterioscler Thromb Vasc Biol ; 31(6): 1342-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21474822

RESUMEN

OBJECTIVE: The goal of this study was to determine whether tumor necrosis factor α (TNFα)-induced Src activation and intercellular adhesion molecule-1 (ICAM-1) phosphorylation rapidly increase endothelial cell adhesivity and polymorphonuclear leukocyte (PMN) sequestration independently of de novo ICAM-1 synthesis. METHODS AND RESULTS: TNFα exposure of mouse lungs for 5 minutes produced a 3-fold increase in (125)I-anti-ICAM-1 monoclonal antibody (mAb) binding and (111)In oxine-labeled PMN sequestration, as well as Src activation, ICAM-1 Tyr518 phosphorylation, and phospho- Tyr518-ICAM-1 coimmunoprecipitation with actin. The response was absent in Nox2(-/-) lungs or following Src inhibition. In COS-7 cells transfected with wild-type (WT), phospho-defective (Tyr518Phe), or phospho-mimicking (Tyr518Asp) mouse ICAM-1 cDNA constructs, TNFα increased the B(max) of YN1/1.7.4 anti-ICAM-1 mAb binding to WT-ICAM-1 but not to Tyr518Phe-ICAM-1, indicating increased binding avidity secondary to ICAM-1 phosphorylation. This effect was mimicked by expression of the Tyr518Asp-ICAM-1 mutant. TNFα also increased the staining intensity and cell surface clustering of YN1/1.7.4 mAb-labeled WT-ICAM-1 that colocalized with F-actin, which was not observed with Tyr518Phe-ICAM-1 but was recapitulated with Tyr518Asp-ICAM-1. Finally, overexpression of ICAM-1 in mouse lungs significantly increased lipopolysaccharide-induced transvascular albumin leakage and bronchoalveolar lavage PMN counts at 2 and 24 hours after lipopolysaccharide inhalation compared with lungs expressing the Tyr518Phe ICAM-1 mutant. CONCLUSION: Src-dependent phosphorylation of endothelial cell ICAM-1 Tyr518 induces PMN adhesion by promoting ICAM-1 clustering, which we propose mediates rapid-phase lung vascular accumulation of PMNs during inflammation.


Asunto(s)
Molécula 1 de Adhesión Intercelular/metabolismo , Neutrófilos/fisiología , Neumonía/etiología , Familia-src Quinasas/metabolismo , Animales , Células COS , Adhesión Celular , Chlorocebus aethiops , Humanos , Lipopolisacáridos/toxicidad , Masculino , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , NADPH Oxidasas/fisiología , Neutrófilos/citología , Fosfatidilinositol 3-Quinasas/fisiología , Fosforilación , Proteína Quinasa C/fisiología , Factor de Necrosis Tumoral alfa/farmacología
13.
Microvasc Res ; 81(2): 206-15, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21167844

RESUMEN

Angiotensin I-converting enzyme (kininase II, ACE, CD143) availability is a determinant of local angiotensin and kinin concentrations and physiological actions. Limited information is available on ACE synthesis in peripheral vascular beds. We studied the distribution of ACE along the human and rat vascular tree, and determined whether the enzyme was uniformly distributed in all endothelial cells (EC) or if differences occurred among vessels and organs. The distribution of ACE was assessed by using a panel of anti-human ACE monoclonal antibodies and serial sections of the entire vascular tree of humans. Comparison was made with other EC markers. EC of small muscular arteries and arterioles displayed high ACE immunoreactivity in all organs studied except the kidney, while EC of large arteries and of veins were poorly reactive or completely negative. Only 20% on average of capillary EC in each organ, including the heart, stained for ACE, with the remarkable exception of the lung and kidney. In the lung all capillary EC were labeled intensively for ACE, whereas in the kidney the entire vasculature was devoid of detectable enzyme. In contrast to the man, the rat showed homogeneous endothelial expression of ACE in all large and middle-sized arteries, and in veins, but in renal vessels ACE expression was reduced. This study documents a vessel, organ and species specific pattern of distribution of endothelial ACE. The markedly reduced ACE content of the renal vasculature may protect the renal circulation against excess angiotensin II formation and kinin depletion, and maintain high renal blood flow.


Asunto(s)
Estructuras Animales/metabolismo , Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Especificidad de Órganos/fisiología , Peptidil-Dipeptidasa A/metabolismo , Adulto , Anciano , Estructuras Animales/irrigación sanguínea , Animales , Anticuerpos Monoclonales/inmunología , Arterias/metabolismo , Vasos Coronarios/metabolismo , Humanos , Inmunohistoquímica , Riñón/irrigación sanguínea , Riñón/fisiología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Microscopía Inmunoelectrónica , Microvasos/metabolismo , Persona de Mediana Edad , Peptidil-Dipeptidasa A/inmunología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Cambios Post Mortem , Ratas , Ratas Endogámicas Lew , Ratas Wistar , Especificidad de la Especie , Venas/metabolismo
14.
J Appl Lab Med ; 6(5): 1179-1191, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34097042

RESUMEN

BACKGROUND: Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by ACE in blood) is associated with increased risk of cardiovascular diseases. Elevated ACE in blood is also a marker for granulomatous diseases. METHODS: We applied our novel approach-ACE phenotyping-to characterize serum ACE in 300 unrelated patients and to establish normal values for ACE levels. ACE phenotyping includes (a) determination of ACE activity with 2 substrates (Z-Phe-His-Leu [ZPHL] and Hip-His-Leu [HHL]), (b) calculation of a ratio for hydrolysis of ZPHL and HHL, and (c) quantification of ACE immunoreactive protein levels and ACE conformation with a set of monoclonal antibodies (mAbs) to ACE. RESULTS: Only a combination of ACE activity determination with 2 substrates and quantification of the amount of ACE immunoreactive protein with mAbs 1G12 and 9B9 allows for the unequivocal detection of the presence of ACE inhibitors in the blood. After excluding such subjects, we were able to establish normal values of ACE in healthy populations: 50%-150% from control pooled serum. This ACE phenotyping approach in screening format with special attention to outliers can also identify patients with various mutations in ACE and may help to identify the as yet unknown ACE secretase or other mechanistic details of precise regulation of ACE expression. CONCLUSIONS: ACE phenotyping is a promising new approach with potential clinical significance to advance precision medicine screening techniques by establishing different risk groups based on ACE phenotype.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Peptidil-Dipeptidasa A/genética , Medicina de Precisión , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Angiotensinas , Humanos , Péptidos , Peptidil-Dipeptidasa A/sangre , Fenotipo
15.
Protein Sci ; 30(8): 1577-1593, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33931897

RESUMEN

Angiotensin I-converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach-conformational fingerprinting. Here we characterized a novel set of 14 mAbs, developed against human seminal fluid ACE. The epitopes for these novel mAbs were defined using recombinant ACE constructs with truncated N and C domains, species cross-reactivity, ACE mutagenesis, and competition with the previously mapped anti-ACE mAbs. Nine mAbs recognized regions on the N domain, and 5 mAbs-on the C domain of ACE. The epitopes for most of these novel mAbs partially overlap with epitopes mapped onto ACE by the previously generated mAbs, whereas mAb 8H1 recognized yet unmapped region on the C domain where three ACE mutations associated with Alzheimer's disease are localized and is a marker for ACE mutation T877M. mAb 2H4 could be considered as a specific marker for ACE in dendritic cells. This novel set of mAbs can identify even subtle changes in human ACE conformation caused by tissue-specific glycosylation of ACE or mutations, and can detect human somatic and testicular ACE in biological fluids and tissues. Furthermore, the high reactivity of these novel mAbs provides an opportunity to study changes in the pattern of ACE expression or glycosylation in different tissues, cells, and diseases, such as sarcoidosis and Alzheimer's disease.


Asunto(s)
Anticuerpos Monoclonales , Mapeo Epitopo/métodos , Peptidil-Dipeptidasa A , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Células CHO , Cricetinae , Cricetulus , Epítopos/genética , Glicosilación , Humanos , Mutación , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/inmunología , Peptidil-Dipeptidasa A/metabolismo , Dominios Proteicos
16.
Transl Res ; 230: 5-20, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32726712

RESUMEN

An elevated blood angiotensin I-converting enzyme (ACE) supports diagnosis of sarcoidosis and Gaucher disease. However, some ACE mutations increase ACE shedding, and patients with these mutations are therefore at risk of being incorrectly diagnosed with sarcoidosis because of elevated serum ACE levels. We applied a novel approach called "ACE phenotyping" to identify possible ACE mutations in 3 pulmonary clinic patients that had suspected sarcoidosis based on elevated blood ACE levels. Conformational fingerprinting of ACE indicated that these mutations may be localized in the stalk region of the protein and these were confirmed by whole exome sequencing. Index patient 1 (IP1) had a mutation (P1199L) that had been previously identified, while the other 2 patients had novel ACE mutations. IP2 had 2 mutations, T887M and N1196K (eliminating a putative glycosylation site), while IP3 had a stop codon mutation Q1124X (eliminating the transmembrane anchor). We also performed a comprehensive analysis of the existing database of all ACE mutations to estimate the proportion of mutations increasing ACE shedding. The frequency of ACE mutations resulting in increased blood ACE levels may be much higher than previously estimated. ACE phenotyping, together with whole exome sequencing, is a diagnostic approach that could prevent unnecessary invasive and/or costly diagnostic procedures, or potentially harmful treatment for patients misdiagnosed on the basis of elevated blood ACE levels.


Asunto(s)
Peptidil-Dipeptidasa A/sangre , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , Sarcoidosis/sangre , Sarcoidosis/diagnóstico , Anciano , Biomarcadores/sangre , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Mapeo Peptídico , Unión Proteica , Conformación Proteica
17.
J Proteome Res ; 9(11): 5782-93, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20873814

RESUMEN

Fine epitope mapping of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) revealed that the epitopes of all mAbs contained putative glycosylation sites. ACE glycosylation is both cell- and tissue-specific and, therefore, the local conformation of ACE produced by different cells could be also unique. The pattern of ACE binding by a set of mAbs to 16 epitopes of human ACE - "conformational fingerprint of ACE" - is the most sensitive marker of ACE conformation and could be cell- and tissue-specific. The recognition of ACEs by mAbs to ACE was estimated using an immune-capture enzymatic plate precipitation assay. Precipitation patterns of soluble recombinant ACE released from Chinese hamster ovary (CHO)-ACE cells was influenced by conditions that alter ACE glycosylation. This pattern was also strongly cell type specific. Patients with sarcoidosis exhibited conformational fingerprints of tissue ACE (lungs and lymph nodes), as well as blood ACE, which were distinct from controls. Conformational fingerprinting of ACE may detect ACE originated from the cells other than endothelial cells in the blood and when combined with elevated blood ACE levels in patients with sarcoidosis may potentially reflect extrapulmonary sarcoidosis involvement (bone marrow, spleen, liver). If proven true, this would serve as a biomarker of enormous potential clinical significance.


Asunto(s)
Peptidil-Dipeptidasa A/química , Sarcoidosis/enzimología , Animales , Anticuerpos Monoclonales , Línea Celular , Mapeo Epitopo/métodos , Epítopos , Glicosilación , Humanos , Peptidil-Dipeptidasa A/inmunología , Conformación Proteica , Distribución Tisular
18.
Microvasc Res ; 80(3): 355-64, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20888351

RESUMEN

Monoclonal antibody (mAb) 9B9 to angiotensin-converting enzyme (ACE) demonstrates selective accumulation in lung tissue of the rat, hamster, cat, monkey and human after systemic injection. It has also been demonstrated that mAb 9B9 is the useful tool for targeting therapeutic agents or genes to lung endothelium. In this study, we describe the generation and characterization of a single-chain derivative (scFv) of mAb9B9 (scFv 9B9). In vitro, scFv9B9 retains the ability of the parental antibody to recognize human and rat ACE when expressed both on the surface of phage and as a soluble protein in prokaryotic and eukaryotic expression systems. The ability of scFv 9B9 presented by phage or the soluble protein labeled with I(125) to recognize ACE in the pulmonary circulation was also confirmed in an in vivo rat model. Sequence analysis revealed a putative glycosylation site in close proximity to the complementarity determining region 2 (CDR2) of the scFv 9B9 heavy chain. Mutation of Asn68 to Gln in the heavy chain of scFv 9B9 eliminated the glycosylation site and significantly improved the binding affinity of scFv 9B9 to human ACE as determined by cell ELISA and Western Blot. Moreover, Asn68Gln scFv 9B9 showed a greater rate of secretion at 30°C than wild type scFv 9B9, but had a decreased thermal stability at 37°C. The development of a stable and functional single-chain format of mAb 9B9 which specifically recognizes human and rat ACE represents a novel antibody-based reagent suitable for targeted delivery of drugs/genes to the pulmonary circulation.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Clonación Molecular , Portadores de Fármacos , Células Endoteliales/enzimología , Pulmón/irrigación sanguínea , Peptidil-Dipeptidasa A/inmunología , Anticuerpos de Cadena Única/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Especificidad de Anticuerpos , Secuencia de Bases , Western Blotting , Células CHO , Regiones Determinantes de Complementariedad , Cricetinae , Cricetulus , Células Endoteliales/inmunología , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Glicosilación , Humanos , Hibridomas , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Ratas , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Especificidad de la Especie , Relación Estructura-Actividad , Temperatura , Transfección
19.
Microvasc Res ; 80(2): 250-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20430040

RESUMEN

Reduced lung capillary expression of angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, and of caveolin-1, an important regulator of endothelial cell signalling, has been demonstrated in various models of pulmonary arterial hypertension (PAH). We addressed the relationship between PAH and ACE expression in caveolin-1 knockout mice (Cav1(-/-)), which have moderate PAH. Tissue ACE activity was reduced by 50% in lungs from 3-month-old Cav1(-/-) mice compared to wild type (WT). A similar reduction in lung endothelial ACE expression was observed by measuring the lung uptake of (125)I-labeled monoclonal anti-ACE antibody and by quantitative immunohistochemistry. These alterations in ACE are limited to capillary segments of the pulmonary circulation. Functionally, the increase in pulmonary artery pressure (PAP) in response to ACE conversion of angiotensin I to angiotensin II in isolated, perfused mouse lungs was reduced significantly in Cav1(-/-) mice compared to WT. Thus, these complementary approaches demonstrate the dependence of lung microvascular endothelial cell ACE protein expression on caveolin-1 expression and underscore the vital role of caveolin-1-regulated pulmonary vascular homeostasis on endothelial ACE expression and activity. In summary, we have revealed a novel role of caveolin-1 in the regulation of ACE expression in pulmonary capillary endothelial cells. Further understanding of the mechanism by which reduced caveolin-1 expression leads altered pulmonary vascular development, PAH, and reduced ACE expression may have important clinical implications in patients with these severe lung diseases.


Asunto(s)
Caveolina 1/genética , Hipertensión Pulmonar/enzimología , Pulmón/enzimología , Peptidil-Dipeptidasa A/metabolismo , Angiotensina I/metabolismo , Angiotensina I/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Presión Sanguínea , Capilares/enzimología , Capilares/patología , Caveolina 1/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/patología , Regulación Enzimológica de la Expresión Génica , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Inmunohistoquímica , Pulmón/irrigación sanguínea , Pulmón/patología , Ratones , Ratones Noqueados , Perfusión , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/enzimología , Arteria Pulmonar/fisiopatología , Transducción de Señal
20.
PLoS One ; 14(12): e0226553, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31877149

RESUMEN

BACKGROUND: Pulmonary vascular endothelium is the main metabolic site for Angiotensin I-Converting Enzyme (ACE)-mediated degradation of several biologically-active peptides (angiotensin I, bradykinin, hemo-regulatory peptide Ac-SDKP). Primary lung cancer growth and lung cancer metastases decrease lung vascularity reflected by dramatic decreases in both lung and serum ACE activity. We performed precise ACE phenotyping in tissues from subjects with lung cancer. METHODOLOGY: ACE phenotyping included: 1) ACE immunohistochemistry with specific and well-characterized monoclonal antibodies (mAbs) to ACE; 2) ACE activity measurement with two ACE substrates (HHL, ZPHL); 3) calculation of ACE substrates hydrolysis ratio (ZPHL/HHL ratio); 4) the pattern of mAbs binding to 17 different ACE epitopes to detect changes in ACE conformation induced by tumor growth (conformational ACE fingerprint). RESULTS: ACE immunostaining was dramatically decreased in lung cancer tissues confirmed by a 3-fold decrease in ACE activity. The conformational fingerprint of ACE from tumor lung tissues differed from normal lung (6/17 mAbs) and reflected primarily higher ACE sialylation. The increase in ZPHL/HHL ratio in lung cancer tissues was consistent with greater conformational changes of ACE. Limited analysis of the conformational ACE fingerprint in normal lung tissue and lung cancer tissue form the same patient suggested a remote effect of tumor tissue on ACE conformation and/or on "field cancerization" in a morphologically-normal lung tissues. CONCLUSIONS/SIGNIFICANCE: Local conformation of ACE is significantly altered in tumor lung tissues and may be detected by conformational fingerprinting of human ACE.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Anciano , Anticuerpos Monoclonales/metabolismo , Epítopos/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Peptidil-Dipeptidasa A/química , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA