Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Phys ; 47(11): 5523-5530, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32970830

RESUMEN

PURPOSE: Melanoma is the most lethal of the three primary skin cancers, including also basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), which are less lethal. The accepted diagnosis process involves manually observing a suspicious lesion through a Dermascope (i.e., a magnifying glass), followed by a biopsy. This process relies on the skill and the experience of a dermatologist. However, to the best of our knowledge, there is no accepted automatic, noninvasive, and rapid method for the early detection of the three types of skin cancer, distinguishing between them and noncancerous lesions, and identifying each of them. It is our aim to develop such a system. METHODS: We developed a fiber-optic evanescent wave spectroscopy (FEWS) system based on middle infrared (mid-IR) transmitting AgClBr fibers and a Fourier-transform infrared spectrometer (FTIR). We used the system to perform mid-IR spectral measurements on suspicious lesions in 90 patients, before biopsy, in situ, and in real time. The lesions were then biopsied and sent for pathology. The spectra were analyzed and the differences between pathological and healthy tissues were found and correlated. RESULTS: Five of the lesions measured were identified as melanomas, seven as BCC, and three as SCC. Using mathematical analyses of the spectra of these lesions we were able to tell that all were skin cancers and we found specific and easily identifiable differences between them. CONCLUSIONS: This FEWS method lends itself to rapid, automatic and noninvasive early detection and characterization of skin cancers. It will be easily implemented in community clinics and has the potential to greatly simplify the diagnosis process.


Asunto(s)
Carcinoma Basocelular , Melanoma , Neoplasias Cutáneas , Carcinoma Basocelular/diagnóstico , Detección Precoz del Cáncer , Humanos , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico por imagen , Análisis Espectral
2.
J Biomed Opt ; 24(12): 1-9, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31884746

RESUMEN

Suturing of corneal incisions requires significant skill. We demonstrate a noncontact method that will simplify the bonding process. 5-mm-long penetrating vertical and slanted incisions were made in corneas of eyes, extracted from dead piglets. A fiber-optic laser system was used for laser soldering of the incisions, under close temperature control, using albumin solder. The burst-pressure PB immediately after the soldering was found to be PB ≈ 92 and 875 mmHg, for vertical and slanted incisions, respectively. PB = 875 mmHg is an exceptionally high figure, ≈10 times the clinically acceptable value for sutured incisions. Laser soldering was then performed on penetrating incisions made in the corneas of live healthy piglets, of weight ≈10 Kg. After a healing period, the eyes were extracted, and the corneas were examined by histopathology and by optical coherence tomography. Our method immediately generated watertight and strong bonding without noticeable corneal shape distortion. These results would be beneficial for cataract surgery and for corneal transplantations. The fiber-optic system makes it much easier to bond corneal incisions. In the future, laser soldering could be automated and efficiently used by less experienced surgeons, thereby reducing the workload on the experienced ones.


Asunto(s)
Córnea , Tecnología de Fibra Óptica/instrumentación , Terapia por Láser/métodos , Animales , Córnea/fisiología , Córnea/efectos de la radiación , Córnea/cirugía , Terapia por Láser/instrumentación , Procedimientos Quirúrgicos sin Sutura , Porcinos , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA