RESUMEN
A recent experiment has observed the antiferromagnetic interaction between the ground state ^{1}S_{0} and the metastable state ^{3}P_{0} of ^{171}Yb atoms, which are fermionic. This observation combined with the use of state-dependent optical lattices allows for quantum simulation of the Kondo model. We propose that in this Kondo simulator the anomalous temperature dependence of transport, namely, the Kondo effect, can be detected through quench dynamics triggered by the shift of a trap potential. For this purpose, we improve the numerical efficiency of the minimally entangled typical thermal states (METTSs) algorithm by applying additional Trotter gates. Using the improved METTSs algorithm, we compute the quench dynamics of the one-dimensional Kondo model at finite temperatures quasiexactly. We find that the center-of-mass motion exhibits a logarithmic suppression with a decrease in the temperature, which is a characteristic feature of the Kondo effect.
RESUMEN
One of the most challenging problems in correlated topological systems is a realization of the reduction of topological classification, but very few experimental platforms have been proposed so far. We here demonstrate that ultracold dipolar fermions (e.g., ^{167}Er, ^{161}Dy, and ^{53}Cr) loaded in an optical lattice of two-leg ladder geometry can be the first promising test bed for the reduction ZâZ_{4}, where solid evidence for the reduction is available thanks to their high controllability. We further give a detailed account of how to experimentally access this phenomenon; around the edges, the destruction of one-particle gapless excitations can be observed by the local radio frequency spectroscopy, while that of gapless spin excitations can be observed by a time-dependent spin expectation value of a superposed state of the ground state and the first excited state. We clarify that even when the reduction occurs, a gapless edge mode is recovered around a dislocation, which can be another piece of evidence for the reduction.
RESUMEN
Magnetization processes of spin-1/2 layered triangular-lattice antiferromagnets (TLAFs) under a magnetic field H are studied by means of a numerical cluster mean-field method with a scaling scheme. We find that small antiferromagnetic couplings between the layers give rise to several types of extra quantum phase transitions among different high-field coplanar phases. Especially, a field-induced first-order transition is found to occur at H≈0.7H_{s}, where H_{s} is the saturation field, as another common quantum effect of ideal TLAFs in addition to the well-established one-third plateau. Our microscopic model calculation with appropriate parameters shows excellent agreement with experiments on Ba_{3}CoSb_{2}O_{9} [T. Susuki et al., Phys. Rev. Lett. 110, 267201 (2013)]. Given this fact, we suggest that the Co^{2+}-based compounds may allow for quantum simulations of intriguing properties of this simple frustrated model, such as quantum criticality and supersolid states.
RESUMEN
Quantum criticality near a tricritical point is studied in the two-component Bose-Hubbard model on square lattices. The existence of a quantum tricritical point on a boundary of a superfluid-insulator transition is confirmed by quantum Monte Carlo simulations. Moreover, we analytically derive the quantum tricritical behaviors on the basis of an effective field theory. We find two significant features of the quantum tricriticality that are its characteristic chemical potential dependence of the superfluid transition temperature and a strong density fluctuation. We suggest that these features are directly observable in existing experimental setups of Bose-Bose mixtures in optical lattices.
RESUMEN
The triangular lattice of S=1/2 spins with XXZ anisotropy is a ubiquitous model for various frustrated systems in different contexts. We determine the quantum phase diagram of the model in the plane of the anisotropy parameter and the magnetic field by means of a large-size cluster mean-field method with a scaling scheme. We find that quantum fluctuations break up the nontrivial continuous degeneracy into two first-order phase transitions. In between the two transition boundaries, the degeneracy-lifting results in the emergence of a new coplanar phase not predicted in the classical counterpart of the model. We suggest that the quantum phase transition to the nonclassical coplanar state can be observed in triangular-lattice antiferromagnets with large easy-plane anisotropy or in the corresponding optical-lattice systems.
RESUMEN
We study superflow decay via quantum phase slips in trapped one-dimensional (1D) quantum gases through dipole oscillations induced by sudden displacement of the trapping potential. We find the relation between the damping rate of the dipole oscillation G and the phase-slip nucleation rate Γ as GâΓ/v, where v is the flow velocity. This relation allows us to show that damping of 1D Bose gases in optical lattices, which has been extensively studied in experiment, is due to quantum phase slips. It is also found that the damping rate versus the flow velocity obeys the scaling formula for an impurity potential even in the absence of an explicit impurity. We suggest that the damping rate at a finite temperature exhibits a universal crossover behavior upon changing the flow velocity.
RESUMEN
An optical lattice quantum simulator is an ideal experimental platform to investigate nonequilibrium dynamics of a quantum many-body system, which is, in general, hard to simulate with classical computers. Here, we use our quantum simulator of the Bose-Hubbard model to study dynamics far from equilibrium after a quantum quench. We successfully confirm the energy conservation law in the one- and three-dimensional systems and extract the propagation velocity of the single-particle correlation in the one- and two-dimensional systems. We corroborate the validity of our quantum simulator through quantitative comparisons between the experiments and the exact numerical calculations in one dimension. In the computationally hard cases of two or three dimensions, by using the quantum-simulation results as references, we examine the performance of a numerical method, namely, the truncated Wigner approximation, revealing its usefulness and limitation. This work constitutes an exemplary case for the usage of analog quantum simulators.
RESUMEN
We perform a stability analysis of superfluid (SF) and supersolid (SS) phases of polarized dipolar bosons in two-dimensional optical lattices at high filling factors and zero temperature, and obtain the phase boundaries between SF, checkerboard SS (CSS), striped SS (SSS), and collapse. We show that the phase diagram can be explored through the application of an external field and the tuning of its direction with respect to the optical lattice plane. In particular, we find a transition between the CSS and SSS phases.
RESUMEN
Dissipation is ubiquitous in nature and plays a crucial role in quantum systems such as causing decoherence of quantum states. Recently, much attention has been paid to an intriguing possibility of dissipation as an efficient tool for the preparation and manipulation of quantum states. We report the realization of successful demonstration of a novel role of dissipation in a quantum phase transition using cold atoms. We realize an engineered dissipative Bose-Hubbard system by introducing a controllable strength of two-body inelastic collision via photoassociation for ultracold bosons in a three-dimensional optical lattice. In the dynamics subjected to a slow ramp-down of the optical lattice, we find that strong on-site dissipation favors the Mott insulating state: The melting of the Mott insulator is delayed, and the growth of the phase coherence is suppressed. The controllability of the dissipation is highlighted by quenching the dissipation, providing a novel method for investigating a quantum many-body state and its nonequilibrium dynamics.
RESUMEN
We study the dynamics of strongly correlated one-dimensional Bose gases in a combined harmonic and optical lattice potential subjected to sudden displacement of the confining potential. Using the time-evolving block decimation method, we perform a first-principles quantum many-body simulation of the experiment of Fertig et al. [Phys. Rev. Lett. 94, 120403 (2005)] across different values of the lattice depth ranging from the superfluid to the Mott insulator regimes. We find good quantitative agreement with this experiment: the damping of the dipole oscillations is significant even for shallow lattices, and the motion becomes overdamped with increasing lattice depth as observed. We show that the transition to overdamping is attributed to the decay of superfluid flow accelerated by quantum fluctuations, which occurs well before the emergence of Mott insulator domains.