Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331755

RESUMEN

Perfluoroalkyl carboxylic acids (PFCAs) exhibit high chemical and thermal stability, rendering them versatile for various applications. However, their notable toxicity poses environmental and human health concerns. Detecting trace amounts of these chemicals is crucial to mitigate risks. Electrochemical sensors surpass traditional methods in sensitivity, selectivity, and cost-effectiveness. In this study, a graphene nanosheet-based sensor was developed for detecting perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA). Using the Hummer method, graphene nanosheets were synthesized and characterized in terms of morphology, structural ordering, and surface topology. Ab initio molecular dynamics simulations determined the molecular interaction of per- and poly-fluoroalkyl substances (PFASs) with the sensor material. The sensor exhibited high sensitivity (50.75 µA·µM-1·cm-2 for PFOA and 29.58 µA·µM-1·cm-2 for PFDA) and low detection limits (10.4 nM for PFOA and 16.6 nM for PFDA) within the electrode dynamic linearity range of 0.05-500.0 µM (PFOA) and 0.08-500.0 µM (PFDA). Under optimal conditions, the sensor demonstrated excellent selectivity and recovery in testing for PFOA and PFDA in environmental samples, including spiked soil, water, spoiled vegetables, and fruit samples.

2.
Phys Chem Chem Phys ; 26(20): 14561-14572, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722083

RESUMEN

Zeolites are versatile materials renowned for their extra-framework cation exchange capabilities, with applications spanning diverse fields, including nuclear waste treatment. While detailed experimental characterization offers valuable insight, density functional theory (DFT) proves particularly adept at investigating ion exchange in zeolites, owing to its atomic and electronic resolution. However, the prevalent occurrence of zeolitic ion exchange in aqueous environments poses a challenge to conventional DFT modeling, traditionally conducted in a vacuum. This study seeks to enhance zeolite modeling by systematically evaluating predictive differences across varying degrees of aqueous solvent inclusion. Specifically focusing on monovalent cation exchange in Na-X zeolites, we explore diverse modeling approaches. These range from simple dehydrated systems (representing bare reference states in vacuum) to more sophisticated models that incorporate aqueous solvent effects through explicit water molecules and/or a dielectric medium. Through comparative analysis of DFT and semi-empirical DFT approaches, along with their validation against experimental results, our findings underscore the necessity to concurrently consider explicit and implicit solvent effects for accurate prediction of zeolitic ionic exchange.

3.
ACS Appl Mater Interfaces ; 16(2): 2497-2508, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38178626

RESUMEN

Designing easy and sustainable strategies for the synthesis of metal-organic frameworks (MOFs) from organic and inorganic wastes with the efficient removal of phosphate from water remains a challenge. The majority of the reported works have utilized costly precursors and nonsoluble ligands for the synthesis of MOFs. Herein, we have developed a low-cost, simple, and sustainable alternative approach using the coprecipitation method in water at room temperature for the synthesis of a new adsorbent-based trimetallic MOF. Poly(ethylene terephthalate) and stainless steel wastes were used as sources of water-soluble disodium terephthalate ligand and three metallic species (chromium, nickel, and iron salts) for the fabrication of trimetallic MOF (CrNiFe-MOF), respectively. The newly developed MOF demonstrates a superior space-time yield of 5760 g m-3 day-1, reaching a level allowing the industrialization production of this sustainable MOF. The scanning electron microscopy and adsorption studies revealed that the developed trimetallic MOF consists of aggregated nanoparticles and the presence of defective as well as mesoporous structures. This MOF showed an enhanced adsorption capacity of phosphate from real eutrophic water samples and higher stability in a range of pHs. The density functional theory calculations evidenced that the phosphate ions preferentially adsorb over H2O toward the metal oxo-trimers, with the adsorption energies increasing from H3PO4 to PO43- species in line with an improvement of the adsorption performance of CrNiFe-MOF when the pH increases, i.e., when HPO42- and PO43- become more predominant. These calculations also supported that the incorporation of Cr metal sites in the oxo-trimer is expected to boost the phosphate affinity of the MOF. Finally, our work provides an easy and eco-friendly approach for MOF designing to enhance phosphate removal from water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA